Electrostatics:
A Key to Understanding Electronic Devices

Physics approach: vector calculus, highly symmetrical problems
Gauss Law: N-(eE) = r
Def. of Potential: ~ E = —Nf
Poisson'sEqn.:  N-(e(-Nf)) = —eN2f =r

Device physics

Real problems (not symmetrical, complicated boundary conditions)

Gauss's Law: d(eE) _ r
dx
Definition of Potential:  E = —4f
dx
2
: ; - daeedios - _df _
Poisson’s Equation: S oD edX2 r
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Boundary Conditions

1. Potentia: f(x=0") = f(x=0")

L FO

2. ElectricField:  e,E(x=0 ) +Q = e,E(x=0")

where Q is a surface charge (units, C/cmz) located at the interface

for the case where Q = O:

common materials:

silicon, e;=11.7 e,
silicon dioxide (SIO,), e, =3.9 &,

A E(X)

®

e =3e

— @
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| ntuition for Electrostatics

Sketching the answer BEFORE doing the math:
~ Electric field points from positive to negative charge
«  Electric field points “downhill” on aplot of potential

~ Electric field is confined to a narrow charged region, in which the positive
chargeis balanced by an equal and opposite negative charge

why?

_Ig ( ) charge-storage structures with
conducting paths between the

kttttfff J + and - electrodes ...

~  Theintegral form of Gauss's law iswhat should be used
Why? It relates the electric field at the edges of a region to the charge inside

The electric field on one side is often known to be zero
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Practical Electrostatics (cont.)

= Use boundary conditions on the potential or electric field to “patch” together
solutions from regions having different material properties

= The voltage drop across charged regionsis the second integral of ?el

Charge density function r (x): only two cases needed for basic device physics
r=0 Pp Econstant P f linear

r=rgo=constant P Elinear b f quadratic

~ surface or sheet charge Q is sometimes present at the boundaries

use Gauss' s Law to determine its effect

EE 105 Fall 2000 Page 4 Week 3




Examplel: Applied Electrostatics

Given:
charge distribution r(x)
r(x) A
Given: Given:
f(x<<0)=05V f(x>>0)=-04V
T "x
Sketch the electric field and the charge
E A ¢
A
— 0.5
X 1 X
|
- .05
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Examplell: Applied Electrostatics

* Given the eectric field,
E(X

N

Sketch the charge density and the potential

R
: >
X
Given: f(x>>0)=0.3V
A f(X)
: >
X
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Application of Gauss'sLaw

~  Atapoint x, the electric field can be found as the charge enclosed, divided by the
permittivity of the material...

caveats (warnings):
(i) the field must be zero at the other side of the charged region

(i) the sign of thefield can be found by keeping track of the +x direction and the
one-dimensional equivalent of the “outward normal;” however, the best
approach is to know the sign of the field from the distribution of chargein the
problem

~  Example: metal-oxide-silicon structure

. r(
Find E(X = - ty, / 2) A

Qg

»  Find E(x = 0%) ... just inside the silicon
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Boundary Condition on E (cont.)

= Sketch E(X) from x = - ty, to X = X4

E(X
A (x)
- tox Xd
| l -
Sketch f (x) through the structure, given that f (Xg) = 400 mV
f (X
A (x)
04V -
1:OX xd
| | >
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Potential and Carrier Concentration in Silicon

+ Question

In thermal equilibrium, can there be potential differencesinside silicon?

Surprising answer is, yes!

e o o (mobile electrons)

DE = energy to create a mobile electron
(could escape from donor or break
the Si-Si bond)

00000000000000000 _(boundd&trons)

n, = ke (DESKT) _ \ A(-af)KT) _ | of okT

Therefore, in thermal equilibrium the potential f changes whenever the electron
concentration varies from position to position. (e.g., variable doping)

Pick the zero reference for f where the electron concentration is n;

n = Keq(o)n(kT) = K therefore n, = nieq(f KT)
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Carrier Concentration and Potential (cont.)

The relationship can be inverted by taking the In = log of both sides

No

n
In|°| =d - T therefore f = Vgin 0
n KT Vth n,

Note that we use the symbol n,, to remind us that we are only dealing with the
electron concentration in thermal equilibrium.

It would be nice to be able to find the potential in terms of the electron
concentration instantaneously, without a calculator ...

- Mo _ &Ny 0 _ No
f = Vthln{ﬁ} = (26mV)(In(1O))IoggT)T = (60mV)Iog{—}

i e10'% 10%°

Thisexpressioniscalled “the 60 mV rule”
Donor concentrations from 1012 to 1012 cm™ therefore correspond to potential's of
f =(60 mV) x 3=180 mV to

f =(60 mV) x 9 =540 mV (at room temperature)

EE 105 Fall 2000 Page 10 Week 3




Theo60 mV Rule

The hole concentration can aso be related to the potential, by substituting
Po = niz/ No

into the 60 mV rule for electrons. Theresult is:

&e10% 6 ep, 0
f = (26mV)In(10)logg o (—60mV)Iogg——1—O+
epolo 2 €10 9

The potential in p-type silicon (where po > 101° cm™3) is negative ... with respect to
n-type or intrinsic silicon

P, equilibrium hole concentration ic m)
p-lype ntrinsic n-Ly pe
b
i i
[o%pts o qpts gt g2 gpltt Lo® 10o° Lot 1o 1od
[T | I I I I I I 1
=550 —480 =30 240 —120 0 120 240 a6l 480 550
I ] ] ] ] ] ] ] ] ] ]
—ﬁﬁ-‘lil —J,;-:n —3;-“ —:.Im —|Ij|'| 0 I?il:h z_lm .16;9 4éu .‘-_I"'-H
T T T T ks T T T T
[z il I I I I I I I I I
1ot 10 Lo Lo® i Lot 1ot Lot ote 1ots gt
p-lvpe intrinsic n-type

a, equilibrivm electnon concentralion (cm” 4
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“Built-in Voltages’

We see that in thermal equilibrium, doping variations lead to potential variations.
We call the difference in potential from such doping variations the “built-in”
voltage.

Example: The what is the built in voltage across a region in which the doping
changes from p type, p, = 10*"/cm® to n-type, n, = 10'7/cm?3 ?

Answer:

Won't such abuilt in voltage lead to a current (in thermal equilibrium), violating
the second law of thermodynamics?

Answer:
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pn Junctions

= ubiquitous | C structure -- pn junctions are everywhere!

%;%

]
p type }
.

3

ntype

P type

a———metal contact
Lo pside

g mela | contact Lo
n side

] n

(b

= thermal equilibrium: no hole current, no electron current
between metal interconnects (could short them together)

... o voltage applied
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pn Junction in Thermal Equilibrium

Basic observations:
1. total current density is zero
2. total electron and total hole current densities are separately zero
3. BUT électron and hole diffusion currents are HUGE near the junction
... there must be cancelling drift currents

... where do the éectric fields come from that drive the drift currents?

holes, A
electrons
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Diffusion Currentsin Thermal Equilibrium

~  Assume atransition region between - X0 and + X, (don’t know how wide yet)

T T,
§ 00 [ em™] Pxample: N, = 1019 em
i —
L pte Ny =101 em™
[p-side: i :
p.—N =10 %om - 10 transition region
1 -
VR ol t_'rﬂn{'r{'rrm]
;
.f"r!'{{ -|
ot 1ol
_.|I T n-side: 5
_-|_1 B .r.lr.:."u’nr \
Lot = 10%cm™
- hl'
T
_'li,'kl '1'url x
[FN]
100 | cm™ n-side: .
1 n,=N,=101m™
L ||.| (i1
r
L.
"
F Lo 4 (ransiti R
; ansition region
-
‘ —X, €XZX
,r-‘f-'.f.'ﬂ i = ( o r:r.l]
Lald) j;,p
H 1o
; -
p-side:
- AT
,=niIN ! I
= 10%em i
CF L0
.l'r [
L
_'T_r.lrl Koo A
[}

note: we don’t know how wide the transition region is (yet)
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Drift and Diffusion in the Transition Region

* Jno = 0and Jy, = 0 due to equilibrium

* negative electric field in the transition region is needed ...
where do + and - charges come from?

= Answer: theroll-off in electron concentration between x = 0 and X,
means that

(¥ = a(=ny(x) +Ny) >0

A A
Nd - == Nd - o *
No(X) Ny(X)
log linear
scale scale
N 0
| > X | X
Xno Xno
A
+ qu —
I
M o(X) gzlaer
0 |
X
Xno
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*

*

Qualitative Electrostaticsin Equilibrium

From the charge density, we can find the electric field and the potential

AP, (Clem™)
s ]
+gN, =163 10
-side —X ~side
n-sidl Xpo n-sid
1 B
e
Xy X
- ':ir""lra = lox I 3
[$20]
AL (x)
P-gide —x n-side
l 'H‘.lrl 'r‘-.':rl
| | B
L™
. - oy
field found
from ntegral
of charge density
_‘r—'-.-.'. |'|':|
ihi
A (X
p-side n-side
B 4, =360 mV
! +
1 1 -
-X r B X
el = l
o, =—3a0mV B
¥
(]

The p-side of the transition region has a negative charge density that is opposite
to the charge on the n-side
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*

Quantitative pn Junction in Thermal Equilibrium

The Depletion Approximation

In the bulk regions far away from the junction, we can approximate

ro=0
Near the junction, the charge density is non-zero. For example, on the n-side of
the junction in the transition region, 0 < X < X,:
Fo=0(Po* Ng-Ng-Ng) =9 (Ng-no)

since there are no acceptors on this side (N, = 0) and the hole concentration is
negligible

The maximum positive value for charge density on the n-side is when there are
no electrons present in equilibrium -- that is, when the silicon in the transition
region is depleted of electrons.

For hand calculations, we will assume that
Mo=Tomax=dNg (0<X<Xy)
ro=-qNy (X,<x<0)

and proceed to find the width of the transition region, which we will rename the
depletion region. The charge density is assumed to fall off abruptly from these
values to zero in the bulk regions, where X < - Xoo and X > X
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Onemoretime...

«  Bulk silicon is NEUTRAL, to a good approximation
>> region 1is bulk:

Mo = q(Nd"'po_Na_no)@D po@\la
>>region 4 is bulk:

Mo = CI(Nd"'po_Na_no)Cq) no@\ld

= Near the junction, the silicon is DEPLETED of mobile carriers:
>> region 2 is depleted:
r 0 = q(Nd + po_ Na_ no) @_qNa

>> region 3 is depleted:

No = q(Nd + po_Na_no) @INd

p n
1 2 |3 4
Xnor Xpo &re not
known yet -- use
boundary conditions
Yo Xoo to find them
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pn Junction in Thermal Equilibrium:

Using the Depletion Approximation

n-side

L E %)
P—Fil.h: _'Tj'”' 'rr'rl
| |

n-side

T

(b

JLD“'.-{J

[rli = ) = I:'llI,'Ilr"il‘l""m= l--—FII IIE’.I“

E'l E\

n-side

p-side A, £
1 .'rl I

(]

but involved. Use the fact that:

¥

> Charge in depletion region must sum to zero (why?)

> Electrostatic potential is continuous

For detailed calculations, see H& S Section 3.4. Analysisis straightforward,
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Depletion Widthsin Thermal Equilibrium

aef Boae Ny ©
Xpo = [€
e qNa ﬂeNd + Na

aé’efBoae N, (‘j
Xno = [§
& ANy géNg + N,g

ef
— % S Bo&l
Xdo = XnoJrXpo a Je q QfeN

~  The barrier voltage

» Asymmetric junctions: i.e,, Ny;>> Ny or Ng>> N.,.

16
N dg

>> most of depletion width is on the side with the lower doping, since

1 1 1

— 4+ = » = (N, »N,)
a d

Ny Ng Ny

1 1 1

— = » = (Ny»N,)
d a

Na I\ld Na

>>most |C pn junctions are highly asymmetric
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pn Junction under Reverse Bias

«  First, we must understand the compl ete structure of the pn junction in thermal
equilibrium:

| & & metal contact 1o
) A
_H'J-. e " [ side
l'l
; —x, 2
metal inter- n R
connection X i
[ +
n
W, ; s metal contact
|/ e Lo n side
i
A ix)
o L _
5 '
W oo | Jx, ¢
P rhied ]
1 1 I -
— + X
@ by W
e J_
4 AE
- qu"

» How can Vp = 0 and the built-in potential barrier bef g =1V (approx.)?

Answer: look at the complete circuit ... including the potential barriers at the
p-type silicon-to-metal (f ) and the metal-to-n-type silicon (f ) junctions.

= Kirchhoff’sVoltage Law:

_fpm_fB_fmn = 0 ... NOT an accident!

fg="fom*f

pm ' ' mn
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Potential Plot through pn Junction

* Wewill define the applied voltage V, as positive to p-side
Vp >0 corresponds to forward with Vy <0 meaning reverse bias

*

Add a battery Vp ... with Vp < 0 (reverse bias now, forward bias in Chap. 6)

= ohmic contact Lo
—W o EaiEE ide
fil 4 P s10E
IJI‘:' =048
|:‘|
+ =X -
V=0V : ¥
= Ko +
X i
W, = a—— Ohmic contact
+”'" o side
L
o,k i —
i X X
. TI!I-'I" : I n P o o
reverse hias 2 W F X
T

pulls metal -to-p
junction down

|

r n
AR
D,'lm
+
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pn Junction under Rever se Bias (cont.)

= Potential plot under reverse bias: contact potentials don’t change ...
they are ohmic contacts. Only place for change is at the pn junction

* The new potential barrier iscalled f; . Find it using KVL again
—Vpf pm—fj—fmn =0

since the sum of the contact potentialsis the built-in barrier

f. = —VD+fpm+f =fg-Vp

j mn

~  The potential barrier isincreased over the built-in barrier by the reverse bias ...
which widens the depletion region (X, > Xno, Xy > Xp0), but

= The solution using the depletion approximation is exactly the same; just replace
fgby (fg—Vp)
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Quantitative Rever se Bias Electrostatics

Xl
—x 0 AP
—x (6.4, ~F =14 NV
‘\\‘\ n-side
pside
F A0 x -2y (6 4
R Ex)
p-side x T n-side
PR M Ld 1"
‘. :
\ thermal equilibium i V= 0%
1!

! L X Vil
Hr=0=- &

Wp=-24V

1'.1'.-: - 64

¥ LR thermal equilibrivm (Vp, =0V,
p-side ,/ i-sitle tp= =08 ¥)
1 1 1 1 1 r"'-l -
| X
—714Y Vp=-24Y B = 32V

\\1 —64 V=72V

D=
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Quantitative Results

Substitute f ; for f g in the equilibrium depletion width and we find the depletion
width under reverse bias (the math is the same):

g -G Xpojl_(VDafB)

Re (fx—VRx)oe N, 06
Xp(VD) — S( B D) d :
aN,  geNg*+ Nog

c anJl—(VDrfB)

ae(fg—Vploee N, ©
X,(Vp) = 2 -G -
e  dNy geNy + Nog

2e((f5—Vp)s )
_ s\' B D/pael 1o _

= Note Xng, Xno, aNd Xy are the widths in thermal equilibrium

n+/p step junction: simplify general results

Xd—
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