Course Overview

• EE 105 – new version
 – Prerequisite: EECS 40
 – analog integrated circuits + basic IC device models needed to design them
 – course incorporates a laboratory

• Related courses:
 – EE 130, 140, 141, 142

Sinusoidal Function Review

\[v(t) = v \cos(\omega t + \phi) \]

- amplitude (half of peak-to-peak)
- frequency (radian) \(\omega = 2\pi f = 2\pi (1/T) \)
- phase (degrees or radians)
Graphical Description

\[v_1(t) = v \cos(\omega t) \]
\[v_2(t) = v \cos(\omega t - 45) \]
\[\omega = \frac{2\pi}{T} \]

Why are Sinusoids Important?

• Any periodic signal \(v(t) \) can be expressed as a sum of sinusoidal signals by a Fourier series expansion (EECS 20N, EE 120)
• The response of a linear circuit to a sinusoidal input, as a function of its frequency \(\omega \), leads to insights into the behavior of the circuit.
Linear Circuits

- **Theorem:** solutions for voltages and currents in a linear circuit (i.e., one consisting of R, L, C and dependent sources G_m, R_m, A_v, and A_i) with a sinusoidal signal as the input are:

RC Circuit with Sinusoidal Input

\[v_c(t) = V_c \cos(\omega t + \phi) : \text{solution is a sinusoidal signal with the same frequency, but with a different amplitude and phase-shifted with respect to the source} \]

\[v_s(t) = V_s \cos(\omega t) : \text{set phase of source to zero (use as the reference)} \]
Circuit Analysis

Circuit Analysis (Continued)
Graphical Result for Phase ϕ

Graphical Result for Amplitude Ratio