Lecture 11

• Last time:
 – pn junctions: thermal equilibrium
 – pn junctions: charge-voltage characteristic

• Today:
 – pn junction *small-signal* capacitance
 (attention: this concept is difficult)

Junction Capacitance C_j

• Slope of charge-voltage plot is the ratio of the small-signal charge to the small-signal voltage

$$slope = \left. \frac{dq_j}{dv_D} \right|_{v_D} = \frac{q_j}{v_d}$$

• Define the slope (units: $C/V = F$) to be the *junction capacitance* C_j
Junction Capacitance vs. DC Bias

Small-Signal Circuit Model

- total voltage and total charge:

\[v_D \]

\[V_D < 0 \text{ V} \]

- small-signal variables only →

\[q_j = Q_J + q_J \]

\[v_d \]

\[C_j(V_D) \]

\[q_j \]

\[-q_j \]
MOS Structure

Thermal Equilibrium
Charged bi-layer forms: + charges on gate, - in substrate
Built-in voltage between gate and substrate
Applying a DC Voltage V_{GB}

Goal: find out how the gate charge Q_G varies as a function of the applied voltage V_{GB}

Procedure:

- start at thermal equilibrium

 (i) go negative until built-in charge is cancelled

 (ii) keep going until charge on gate is negative

 (iii) go positive from thermal equilibrium

 (iv) keep increasing V_{GB} until ...

IMPORTANT: IDENTIFY CHARGE IN SUBSTRATE

Cancel the Built-in Voltage

Apply V_{FB} to “zero” the built-in voltage

The diagram shows a semiconductor device with labels for V_{GB}, V_{FB}, and charge density $\rho(x)$.
Accumulation

\[V_{GB} < V_{FB} \]

The accumulation region is formed when the gate voltage is less than the flat band voltage. The interface charge is given by:

\[Q_G \]

Depletion: \(V_{GB} > V_{FB} \)

\[V_{FB} < V_{GB} < V_{TH} \]

The depletion region is formed when the gate voltage is greater than the flat band voltage. The interface charge is given by:

\[Q_G \]

\[\rho(x) \]

\[X_d \]