Another Example:

Some \(v_{in} \), some \(g_m \)'s, \(L_0 \)'s,
\(v_D \), \(v_{BI} \), \(v_{BI2} \) biased so all transistors in saturation.

VOTE ON GAIN:

\[
\begin{align*}
&\text{a.} \quad -\frac{g_m v_{in}^2}{2} \\
&\text{b.} \quad \frac{g_m^2 v_{in}^2}{4} \\
&\text{c.} \quad \frac{g_m^3 v_{in}^3}{6} \\
&\text{d.} \quad \frac{g_m^4 v_{in}^4}{8}
\end{align*}
\]

CORRECT

\[A_v = \frac{1}{g_m r_o}, \quad \frac{-g_m r_o^2}{2} = \frac{g_m^3 r_o^3}{4} \]

\[\frac{\text{Source}}{\text{follower}} \]
\[\frac{\text{common source}}{\text{cascaded source}} \]

\[\text{Cascaded: Same } g_m \text{, but } R \text{ out much higher } \]
\[v(\times g_m r_o) \]

Grab poles (approx.)

Source Follower: \[\text{Miller Cap: } C_{gs}(\times A) \times 0 \]
\[+ C_{gd} + C_{gb} \]

Stage 2:
\[\frac{1}{(\frac{1}{g_m})\left[C_{gs} + C_{gd} + (1-A)C_{gb} \right]} \]

Stage 3: No little Miller effect
\[\frac{1}{\frac{1}{2} \left[C_{gs} + C_{gd} + C_{gb} + C_{gd}(2) \right]} \]

Output: \[\frac{1}{\frac{g_m r_o^2}{2} C_L} \]

\[* \text{ For those not in my section, this is a quick way to grab pole frequencies. It's a better approximation when the poles are farther apart. For close together poles, open-circuit time constant analysis is more accurate.} \]