Why multi-stage?

- Improve gain
- Improve input / output resistance to match environment
Two-Stage Voltage Amplifier

- Use two-port models to explore whether the combination “works”

\[R_{in} = R_{in1} \rightarrow \infty \quad R_{out} = R_{out2} \rightarrow R_L//r_o \]

Results:

\[R_{in} = R_{in1}, \quad R_{out} = R_{out2}, \quad A_v = A_{v1} \cdot A_{v2} \]
Voltage Amplifier

- Should have low output resistance to effectively drive \(RL \)
- Add Common-Drain (Source Follower) Stage

\[\begin{align*}
CS_1 & \quad CS_2 & \quad CD_3
\end{align*} \]

Input resistance: \(\infty \)

Voltage gain (2-port parameter): \((g_m * r_0)^2 \times 1 \)

Output resistance: \(\sim 1/g_m \)

Transconductance Amplifier

- Should have high input and output resistance and high \(G_m \)

\[\begin{align*}
CS_1 & \quad CS_2 & \quad CG_3
\end{align*} \]

Add common gate stage

Input resistance: \(\infty \)

Transconductance: \(A_1 g_{m2} \)

Output resistance: \(r_d // r_{oc} \)
Adding Common Gate Stage

Input resistance: ∞

Voltage gain (2-port parameter): $A_1g_{m2}.r_{out2}/(r_{out2}+1/gm_3)$

Output resistance: $r_{oc}\parallel\left(g_{m2}R_s\right)$ with $R_s = r_{out2}$

Summary of Cascaded Amplifiers

General goals:

1. Boost the gain parameter (except for buffers)
2. Optimize the input and output resistances

<table>
<thead>
<tr>
<th>Parameter</th>
<th>R_{in}</th>
<th>R_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage:</td>
<td>Hi</td>
<td>Lo</td>
</tr>
<tr>
<td>Current:</td>
<td>Lo</td>
<td>Hi</td>
</tr>
<tr>
<td>Transconductance:</td>
<td>Hi</td>
<td>Hi</td>
</tr>
<tr>
<td>Transresistance:</td>
<td>Lo</td>
<td>Lo</td>
</tr>
</tbody>
</table>
Second Design Issue: DC Coupling

Constraint: large inductors and capacitors are not available

Output of one stage is directly connected to the input of the next stage → must consider DC levels … why?

Alternate CS-CS Cascade

Use a PMOS CS Stage:
Multistage Current Buffers

Are two cascaded common-gate stages better than one?

\[R_{in} = R_{in1} \]

Voltage gain:

\[A_{v1} \cdot \frac{R_{in2}}{R_{in2} + R_{out1}} \cdot A_{v2} = g_m r_0 \cdot \frac{1/g_m}{1/g_m + r_0} \cdot g_m r_0 \approx g_m r_0 \]

CG Cascade: DC Biasing

Two stages can have different supply currents

Extreme case:
\[I_{BIAS2} = 0 \text{ A} \]
CG Cascade: Sharing a Supply

First stage has no current supply of its own → its output resistance is modified

The Cascode Configuration

Common source / common gate cascade is one version of a cascode (all have shared supplies)

DC bias:

Two-port model: first stage has no current supply of its own
Cascode Two-Port Model

Output resistance of first stage = \(R_{\text{out,CS}} = r_{o1} \)

\[
R_{\text{out}} = r_{oc2} \parallel (1 + g_m r_{o1}) r_{o2}
\]

\(G_m = g_{m1} \)

\(R_{in} = \infty \)

Why is the cascode such an important configuration?

Miller Capacitance of Input Stage

Find the Miller capacitance for \(C_{gd1} \)

Input resistance to common-gate second stage is low → gain across \(C_{gd} \) is small.
Two-Port Model with Capacitors

Miller capacitance:

\[C_M = (1 - A_{V_{C_{gd1}}}) C_{gd1} \]

\[A_{V_{C_{gd1}}} = -g_{m1} \left(\frac{1}{g_{m2} || r_{o1}} \right) \approx - \frac{g_{m1}}{g_{m2}} = -1 \]

\[C_M = 2C_{gd1} \]

Other contributions
Improved Current Sources

Goal: increase r_{oc}
Approach: look at amplifier (?) output resistance results … to see topologies that boost resistance

Cascode (or Stacked) Current Source

Insight: $V_{GS2} = \text{constant}$ AND $V_{DS2} = \text{constant}$

Small-Signal Resistance r_{oc}:
Drawback of Cascode I-Source

Minimum output voltage for all transistors saturated:

\[V_{OUT,MIN} = V_{DS4,SAT} + V_{S4} = V_{DS4,SAT} + V_{GS2} \]

Complete Amplifier Schematic
Complete Amplifier Schematic

Goals: $g_{m1} = 1 \text{ mS}, R_{out} = 10 \ \text{M}\Omega$

Device Sizes

M_1: select $(W/L)_1 = 200/2$ to meet specified $g_{m1} = 1 \text{ mS}$

\rightarrow find $V_{BIAS} = 1.2 \text{ V}$

Cascode current supply devices: select $V_{SG} = 1.5 \text{ V}$

$(W/L)_4 = (W/L)_3B = (W/L)_3 = (W/L)_3B = 64/2$

M_2: select $(W/L)_2 = 50/2$ to meet specified $R_{out} = 10 \ \text{M}\Omega$

\rightarrow find $V_{GS2} = 1.4 \text{ V}$

Match M_2 with diode-connected device M_{2B}.

Assuming perfect matching and zero input voltage, what is V_{OUT}?
Output (Voltage) Swing

Maximum V_{OUT}

Minimum V_{OUT}

Two-Port Model

Find output resistance R_{out}

$\lambda_n = (1/20) \text{ V}^{-1}$, $\lambda_p = (1/50) \text{ V}^{-1}$ at $L = 2 \mu m \rightarrow$

$r_{on} = (100 \mu A / 20 \text{ V}^{-1})^{-1} = 200 \text{ k}\Omega$, $r_{op} = 500 \text{ k}\Omega$

$g_{m2} = \frac{2I_{D2}}{V_{GS2} - V_{Tn}} = \frac{2(100\mu A)}{1.4V - 1V} = 500\mu S$

$g_{m3} = \frac{2(-I_{D3})}{V_{SG3} + V_{Tp}} = \frac{2(100\mu A)}{1.5V - 1V} = 400\mu S$

$R_{out} = r_{oc} \parallel r_{o2}(1 + g_{m2}R_{S2}) = r_{o3}(1 + g_{m3}R_{S3}) \parallel r_{o2}(1 + g_{m2}r_{o1})$