EE105 – Fall 2014 Microelectronic Devices and Circuits

Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH)

Lecture 8: MOSFET (1): physics

1

MOS (Metal-Oxide-Semiconductor) Capacitor Structure

- First electrode Gate: Consists of low-resistivity material such as metal or doped polycrystalline silicon
- Second electrode Substrate or Body: n- or p-type semiconductor
- Dielectric Silicon dioxide: stable high-quality electrical insulator between gate and substrate.

Lecture 8: MOSFET (1): physics

MOS Capacitors in Three Bias Regions

Threshold voltage: V_{TN} Gate voltage: V_G

• Accumulation: $V_G << V_{TN}$

Depletion: V_G < V_{TN}
 Inversion: V_G > V_{TN}

 Total capacitance modeled as series combination of fixed oxide capacitance and voltage-dependent depletion-layer capacitance.

NMOS Transistor Structure

- 4 device terminals: Gate(G), Drain(D), Source(S) and Body(B).
- Source and drain regions form pn junctions with substrate.
- v_{SB}, v_{DS} and v_{GS} always positive during normal operation.
- v_{SB} always < v_{DS} and v_{GS} to reverse bias pn junctions

NMOS Transistor: Qualitative I-V Behavior

- V_{GS} << V_{TN}: Only small leakage current flows.
- V_{GS} < V_{TN}: Depletion region formed under gate merges with source and drain depletion regions. No current flows between source and drain.
- V_{GS} > V_{TN}: Channel formed between source and drain. If v_{DS} > 0, finite i_D flows from drain to source.
- $i_B = 0$ and $i_G = 0$.

Lecture 8: MOSFET (1): physics

5

NMOS Transistor: Triode Region Characteristics

$$K_n = \mu_n C_{ox}^{"} \left(\frac{W}{I} \right)^{"}$$

 $C_{ox}^{"} = \varepsilon_{ox}/T_{ox}$: oxide capacitance per unit area

 ε_{ox} = oxide permittivity (F/cm)

 T_{ox} = oxide thickness (cm)

Cal

Lecture 8: MOSFET (1): physics

Charge per unit length in channel:

$$Q'(x) = -WC''_{ox}(v_{GS} - v(x) - V_{TN})$$
 [F/cm]

v(x): voltage of channel at position x

$$i(x) = Q'(x)v_x(x),$$

 $v_{r}(x)$: electron velocity at x

$$v_x(x) = -\mu_n E_x = -\mu_n \frac{dv(x)}{dx}$$

 μ_n : electron mobility

$$\int_{0}^{L} i(x) dx = \int_{0}^{L} W \mu_{n} C_{ox}^{*} (v_{GS} - v(x) - V_{TN}) \frac{dv(x)}{dx} dx$$

$$i_D L = \int_{0}^{v_{DS}} W \mu_n C_{ox}^{"}(v_{GS} - v(x) - V_{TN}) dv(x)$$

$$i_D = K_n \left(v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS}$$

for
$$v_{GS} - V_{TN} \ge v_{DS} \ge 0$$

NMOS Transistor: Saturation Region

- If v_{DS} increases above triode region limit, the channel region disappears and is said to be pinched-off.
- Current saturates at constant value, independent of v_{DS}.
- Saturation region operation mostly used for analog amplification.

Lecture 8: MOSFET (1): physics

7

NMOS Transistor: Saturation Region (cont.)

 $v_{DSAT} = v_{GS} - V_{TN}$ is termed the saturation or pinch-off voltage

Lecture 8: MOSFET (1): physics

Transconductance of an MOS Device

 Transconductance relates the change in drain current to a change in gate-source voltage

$$g_m = \frac{\partial i_D}{\partial v_{GS}}\bigg|_{Q-pi}$$

 Taking the derivative of the expression for the drain current in saturation region,

$$g_m = \mu_n C_{ox}^{"} \frac{W}{L} (V_{GS} - V_{TN}) = \frac{2I_D}{V_{GS} - V_{TN}}$$

Lecture 8: MOSFET (1): physics

9

Channel-Length Modulation

- $\begin{array}{c|c} & v_{GS} & v_{DS} \\ \hline & & \\ & &$
- As v_{DS} increases above v_{DSAT} , the length of the depleted channel beyond the pinch-off point, DL, increases and the actual L decreases.
- i_D increases slightly with v_{DS} instead of being constant.

$$i_D = \frac{\mu_n C_{ox}^{"}}{2} \frac{W}{L} (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS})$$

λ = channel length modulation parameter

Lecture 8: MOSEET (1): physics

Body Effect or Substrate Sensitivity

 Non-zero v_{SB} changes threshold voltage, causing substrate sensitivity modeled by

$$V_{TN} = V_{TO} + \gamma \left(\sqrt{v_{SB} + 2\phi_F} - \sqrt{2\phi_F} \right)$$

where

 V_{TO} = threshold voltage for v_{SB} = 0

$$\gamma = \text{body} - \text{effect parameter } \left(\sqrt{V}\right)$$

$$2\phi_F$$
 = surface potential (V)

Lecture 8: MOSFET (1): physics

11

NMOS Model Summary

NMOS TRANSISTOR MATHEMATICAL MODEL SUMMARY

Equations (4.24) through (4.28) represent the complete model for the i-v behavior of the NMOS transistor.

For all regions,

$$K_n = K'_n \frac{W}{L}$$
 $K'_n = \mu_n C''_{ox}$ $i_G = 0$ $i_B = 0$

Cutoff region:

$$i_D = 0$$
 for $v_{GS} \le V_{TN}$ (4.25)

Triode region:

$$i_D = K_n \left(v_{GS} - V_{TN} - \frac{v_{DS}}{2} \right) v_{DS} \quad \text{for } v_{GS} - V_{TN} \ge v_{DS} \ge 0$$
 (4.26)

Saturation region:

$$i_D = \frac{K_n}{2} (v_{GS} - V_{TN})^2 (1 + \lambda v_{DS})$$
 for $v_{DS} \ge (v_{GS} - V_{TN}) \ge 0$ (4.27)

Threshold voltage:

$$V_{TN} = V_{TO} + \gamma \left(\sqrt{v_{SB} + 2\phi_F} - \sqrt{2\phi_F} \right) \tag{4.28}$$

 $V_{TN}>0$ for enhancement-mode NMOS transistors. Depletion-mode NMOS devices can also be fabricated, and $V_{TN}\leq 0$ for these transistors.

SFET (1): physics

(4.24)

PMOS Transistors: Enhancement-Mode Structure

- p-type source and drain regions in an n-type substrate.
- v_{GS} < 0 required to create p-type inversion layer in channel region
- For current flow, $v_{GS} < V_{TP}$
- To maintain reverse bias on source-substrate and drain -substrate junctions, $v_{SB} < 0$ and $v_{DB} < 0$
- Positive bulk-source potential causes V_{TP} to become more negative

Lecture 8: MOSFET (1): physics

13

PMOS Transistors: Output Characteristics

- For $v_{GS} > V_{TP}$, transistor is off.
- For more negative $v_{\rm GS}$, drain current increases in magnitude.
- PMOS device is in the triode region for small values of V_{DS} and in saturation for larger values.
- Remember V_{TP} < 0 for an enhancement mode transistor

Lecture 8: MOSFET (1): physics

BSAC

PMOS Model Summary

PMOS TRANSISTOR MATHEMATICAL MODEL SUMMARY

Equations (4.29) through (4.33) represent the complete model for the *i-v* behavior of the PMOS transistor

For all regions,

$$K_p = K'_p \frac{W}{L}$$
 $K'_p = \mu_p C''_{ox}$ $i_G = 0$ $i_B = 0$ (4.29)

Cutoff region:

$$i_D = 0$$
 for $V_{GS} \ge V_{TP}$ (4.30)

Hou

$$i_D = K_p \left(v_{GS} - V_{TP} - \frac{v_{DS}}{2} \right) v_{DS} \quad \text{for } 0 \le |v_{DS}| \le |v_{GS} - V_{TP}|$$
 (4.31)

Saturation region:

$$i_D = \frac{K_p}{2} (v_{GS} - V_{TP})^2 (1 + \lambda |v_{DS}|) \quad \text{for } |v_{DS}| \ge |v_{GS} - V_{TP}| \ge 0$$
 (4.32)

Threshold voltage:

$$V_{TP} = V_{TO} - \gamma \left(\sqrt{v_{BS} + 2\phi_F} - \sqrt{2\phi_F} \right) \tag{4.33}$$

For the enhancement-mode PMOS transistor, $V_{TP} < 0$. Depletion-mode PMOS devices can also be fabricated; $V_{TP} \geq 0$ for these devices.

Lecture 8: MOSFET (1): physics