EE105 – Fall 2015
Microelectronic Devices and Circuits
Multi-Stage Amplifiers

Prof. Ming C. Wu
wu@eecs.berkeley.edu
511 Sutardja Dai Hall (SDH)
Terminal Gain and I/O Resistances of MOS Amplifiers

<table>
<thead>
<tr>
<th>Common Source (CS)</th>
<th>Common Drain (CD)</th>
<th>Common Gate (CG)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For the gain, R_i, R_o of the whole amplifier, you need to include voltage/current dividers at input and output stages.
For intuition:
Universal treatment of different transistor configuration:

Gain:
\[\text{CS: } A_v = -g_m R_0 \]
\[\text{CD: } A_v = 1 \]
\[\text{CG: } A_v = g_m R_0 \]
\[A_x = -1 \]

\[R_G = \infty \]
\[R_D \approx (g_m R_0) R_{s, \text{ext}} + R_0 \]
In case \(R_{s, \text{ext}} = 0 \)
\[R_D = R_0 \]
\[R_S = \frac{1}{g_m} \]

\[(g_m R_{s, \text{ext}}) R_0 \gg R_0 \gg \frac{1}{g_m} \]
Summary of MOS Single-Transistor Amplifiers

<table>
<thead>
<tr>
<th>MOS</th>
<th>Common Source</th>
<th>Common Source with Deg.</th>
<th>Common Drain</th>
<th>Common Gate</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_i</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>Small</td>
</tr>
<tr>
<td>R_o</td>
<td>Large</td>
<td>Very Large</td>
<td>Small</td>
<td>Large</td>
</tr>
<tr>
<td>A_V</td>
<td>Moderate</td>
<td>Small</td>
<td>~ 1</td>
<td>Moderate</td>
</tr>
<tr>
<td>f_H</td>
<td>Small</td>
<td>Moderate</td>
<td>Large</td>
<td>Large</td>
</tr>
</tbody>
</table>

- R_i represents the input resistance, and its value is infinite for common source and common source with degeneration configurations.
- R_o is the output resistance and is large for common source and very large for common source with degeneration.
- A_V is the voltage gain, moderate for common source and small for common source with degeneration.
- f_H is the frequency at which the phase shift is 90°, small for common source and moderate for common source with degeneration.

- Miller capacitance is indicated by the blue text, $\frac{g_m R_o}{1 + g_m R_s}$, which reduces the effective impedance at high frequencies, making f_H larger.
- No Miller effect is indicated by the red text, suggesting that the Miller effect is negligible.

Caltech BSAC
Single Stage Amplifier Cannot Meet All Requirements

• For example, a general purpose operational amplifier requires
 – High input resistance ~ 1MΩ
 – Low output resistance ~ 100Ω
 – High voltage gain ~ 100,000

• No single transistor amplifier can satisfy all spec’s

• Cascading multiple stages of amplifiers offers a path towards the design
Multistage Amplifiers

- Usually
 - An input stage to provide required input resistance
 - Middle stage(s) to provide gain
 - An output stage to provide required output resistance or drive external loads

- More gain!
 - Gain/stage limited, especially in nanoscale devices

- Improve Bandwidth
 - De-couple high impedance nodes from large capacitors

- DC coupling (no passive elements to block the signal)
 - Use amplifiers to naturally “level shift” signal
Biasing

* Discrete

Integrated circuit

DC Biasing
Impedance “Match”

• On-chip circuits often use “voltage/current” matching to minimize loading

• Keep in mind the input resistance and output resistance of each type of stage so that the loading does not create an undesired effect

<table>
<thead>
<tr>
<th></th>
<th>Ideal R_{in}</th>
<th>Ideal R_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Amplifier</td>
<td>∞</td>
<td>0</td>
</tr>
<tr>
<td>Current Amplifier</td>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>Transconductance Amplifier</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>Transresistance Amplifier</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Two-Stage Voltage Amplifier

- Boost gain by cascading Common-Source stages

Can combine into a single 2-port model
Results of new 2-port: \(R_{in} = R_{in1}, R_{out} = R_{out2} \)
CS Cascade Analysis

Results of new 2-port:

\[R_{in} = R_{in1} = \infty \]
\[R_{out} = R_{out2} = \frac{1}{r_o || r_{oc}} \]
\[A_V = \frac{v_{out}}{v_{in}} = \frac{1}{g_m v_{int}} \cdot \frac{v_{out}}{v_{int}} = \frac{-g_{m1} \cdot (r_o || r_{oc})}{g_{m2} \cdot (r_o || r_{oc})} \]
\[\frac{v_{int}}{v_{in}} = \frac{v_{out}}{v_{int}} = \frac{g_{m1}}{g_{m2}} \cdot (r_o || r_{oc})^2. \]
Two time constants:
\[\tau_1 = \left(C_{gs} + C_m \right) \cdot \frac{1}{\left(r_o \parallel r_{oc} \right) A} \]
\[\tau_2 = \frac{C_T}{C_m} \]
Bandwidth Extension

- Common Source stage has high gain, but low bandwidth
- Note that Miller effect is the culprit
- Follower stage can buffer source resistance from Miller cap
Bandwidth Extension Using Source Follower (SF)

\[V_{out} = \frac{V_{in} + V_{int} + V_{int2}}{V_{in}} \cdot \frac{V_{out}}{V_{int}} \cdot \frac{g_{m1}}{g_{m1} (r_o || r_{oc})} \cdot \frac{g_{m2} (r_o || r_{oc})}{r_{o} || r_{oc}} \]
CS Example with Cap Load

- C_{in} and C_S are very large, therefore they look like short circuits to the AC signal.

- If C_L is very large, its pole dominates, let’s analyze...
What are the time constants associated with the capacitors in this circuit?

What can we do if we have to drive a large C_L?
• How can we reduce the impact of C_L?

• One way is to reduce the resistance R_d, but this reduces our low-frequency gain

• To recover the gain we can increase g_{m1}.

What does this cost us?
A better way to extend the bandwidth is to add a source-follower stage.

Similar to previous example
By adding a CD (Source Follower) we can increase the bandwidth.

It costs us power for the CD stage.

Remember that increasing the BW by increasing g_{m1} costs us much more.

$$T_2 = C_L \cdot \frac{1}{g_{m2}}$$
CS + CG = Cascode

- Common source provides gain, CG acts as a buffer, but is it even helping?

- How do you bias this circuit?

\[
A_v = -g_m \cdot R_{out} = -g_m (R_I / g_m^2) \\
\approx -g_m \cdot \frac{1}{g_m^2} \approx -1
\]
Merged CS + CG = Cascode

- Let’s apply 2-port small-signal analysis

- In this case, we care about the input current to the second stage

- Note that the input resistance of the CG is low, therefore the majority of the CS current is fed to the CG

- \(A_v = \frac{V_{out}}{V_{in}} = \frac{i_{out}}{i_{in}} \cdot \frac{V_{out}}{V_{in}} = g_m \cdot R_{out} \)
Cascode Bandwidth

• Draw in the C_{gs} and C_{gd} capacitors.
• Which ones are Miller effected?
• Is this better or worse than a CS without a CG?

$$C_m \approx C_{gd}(1 - A)$$

$$C_m = C_{gd}(1 - (-1))$$

$$\approx 2C_{gd}$$
Cascode Bandwidth

• Draw in the capacitors and input resistance

\[C_M = C_{gd} \left(1 + \frac{1}{g_{m2}} \right) \]

\[\approx C_{gd} \left(1 + \frac{g_{m1}}{g_{m2}} \right) \approx \frac{1}{2} C_{gd} \]
Cascode Biasing

- CG has a very large output resistance
- Loading it with R_D is likely to reduce the voltage gain
- We can increase the gain by using a current source load, but r_{oc} needs to be very large. Can use a cascode current mirror!
Complete Amplifier Design

Goals: \(g_{m1} = 1 \text{ mS} \), \(R_{out} = 5 \text{ M}\Omega \)

For simplicity, let’s assume all \(g_m \) and \(r_o \) values are equal

\[A_V \approx -g_{m1}R_{out} = -1 \text{ mS} \times 5 \text{ M}\Omega = -5,000 \]

\[R_{out} \approx \frac{1}{2} g_m r_o^2 = 5 \text{ M}\Omega \]

\[r_o = \sqrt{\frac{20 \text{ M}\Omega}{g_m}} = \sqrt{\frac{10 \text{ M}\Omega}{1 \text{ mS}}} = 100 \text{k}\Omega \]

\[A_V = g_{m1} \cdot R_{out} = g_{m1} \cdot g_{m2} \cdot r_o^2 \]
Bias Current & Device Sizing

Need to know process parameters to solve for W/L

\[k' = 100 \, \mu A/V^2 \]
\[\lambda = 0.1 \, [V^{-1}] \]

\[r_o = \frac{1}{\lambda I_{DS}} = 100k\Omega \]
\[I_{DS} = \frac{1}{0.1V^{-1} \times 100k\Omega} = 100\mu A \]
\[g_m = \sqrt{2k' \left(\frac{W}{L} \right) I_{DS}} = 1mS \]
\[\frac{W}{L} = \frac{g_m^2}{2k' I_{DS}} = \frac{(1mS)^2}{2 \times 100\mu \times 100\mu A} = 50 \]
Output (Voltage) Swing

Need to know \(V_{GS} - V_T \) (e.g. \(V_{DSAT}, V_{OV} \))

\[
g_m = \frac{2I_{DS}}{V_{GS} - V_T} = 1mS
\]

\[
V_{GS} - V_T = \frac{2I_{DS}}{g_m} = \frac{2 \times 100 \mu A}{1mS} = 0.2V
\]

Maximum \(V_{OUT} \) = \(V_{DD} - 2V_{sat} = 4.6 \)

Minimum \(V_{OUT} \) = \(0.4V \),

Input Bias \(V_{IN} \leq 0.7V \).