Two-Stage CMOS Op-Amp Circuit
Two-Stage CMOS Op-Amp Circuit

- Current Mirrors
- Differential Pair with Current Mirror Load
- Common Source Amplifier Stage

Diagram includes transistors and labels for each component.
Two-Stage CMOS Op-Amp Circuit

Voltage gain of the first stage (Q₁, Q₂): Differential input, single-ended output:

\[A_1 = -g_{m1} \left(r_{o2} \parallel r_{o4} \right) \]

Voltage gain of the 2nd stage (Q₆): Common source with current source load:

\[A_2 = -g_{m6} \left(r_{o6} \parallel r_{o7} \right) \]

Total gain

\[A_o = A_1 A_2 \]
Example:

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/L</td>
<td>20/0.8</td>
<td>20/0.8</td>
<td>5/0.8</td>
<td>5/0.8</td>
</tr>
<tr>
<td>in um</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Q5</th>
<th>Q6</th>
<th>Q7</th>
<th>Q8</th>
</tr>
</thead>
<tbody>
<tr>
<td>W/L</td>
<td>40/0.8</td>
<td>10/0.8</td>
<td>4/0.8</td>
<td>4/0.8</td>
</tr>
<tr>
<td>in um</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

I_{REF} = 90 \mu A, \ V_{tn} = 0.7V, \ V_{tp} = -0.8V
\mu_nC_{ox} = 160 \mu A/V^2, \mu_pC_{ox} = 40 \mu A/V^2
|VA| = 10V for all devices
V_{DD} = V_{SS} = 2.5V

Find I_D, |V_{OVL}|, |V_{GS}|, g_m, r_o for all Q’s, voltage gain, input common mode range, output voltage range.
Solution: DC Parameters

\(I_{REF} = 90 \mu A \)

\(I_{D5} = \frac{(W/L)_5}{(W/L)_8} = 90 \mu A \)

\(I_{D7} = \frac{(W/L)_7}{(W/L)_8} = 90 \mu A \)

\(I_{D1} = I_{D2} = I_{D3} = I_{D4} = \frac{I_{D5}}{2} = 45 \mu A \)

\(I_{Di} = \frac{1}{2} \mu_i C_{ox} \left(\frac{W}{L} \right) |V_{OV}|^2 \)

\(|V_{OV1}| = |V_{OV2}| = |V_{OV3}| = |V_{OV4}| = 0.3 \)

\(|V_{OV5}| = |V_{OV6}| = |V_{OV7}| = |V_{OV8}| = 0.3 \)

\(|V_{GS}| = |V_{OV}| + |V_t| \)

NMOS: \(|V_{GS}| = 0.3 + 0.7 = 1.0V \)

PMOS: \(|V_{GS}| = 0.3 + 0.8 = 1.1V \)
Solution: AC Parameters

\[g_m = \frac{2I_D}{|V_{OV}|} \]

\[g_{m1-4} = 2 \times 45 \mu A / 0.3V = 0.3mA / V \]
\[g_{m5-8} = 2 \times 90 \mu A / 0.3V = 0.6mA / V \]

\[r_o = \frac{|V_A|}{I_D} \]

\[r_{o1-4} = \frac{10V}{45 \mu A} = 222k\Omega \]
\[r_{o5-8} = \frac{10V}{90 \mu A} = 111k\Omega \]

\[A_1 = -g_{m1}(r_{o2} \parallel r_{o4}) \]
\[= -0.3 \times 222 / 2 = -33.3V / V \]

\[A_2 = -g_{m6}(r_{o6} \parallel r_{o7}) \]
\[= -0.6 \times 111 / 2 = -33.3V / V \]

\[A_o = A_1A_2 = 1109V / V \]
\[= 20 \log(1109) = 61dB \]
Solution: Input Common-Mode Ranges

Input common-mode voltage range:
Maximum: \(Q_5 \) near edge of saturation

\[
|V_{DS5}| = |V_{OV5}| = 0.3V
\]

\[
\nu_{icm}^{\text{max}} = 2.5 - |V_{OV5}| - |V_{GS5}|
\]

\[
= 2.5 - 0.3 - 1.1 = 1.1V
\]

Minimum: \(Q_1 \) near edge of saturation

\[
\nu_{D1} = -V_{SS} + V_{GS3} = -2.5 + 1 = -1.5V
\]

\[
|\nu_{DS1}| = |\nu_{GS1}| - |\nu_{ip}|
\]

\[
-\nu_{DS1} = -\nu_{GS1} - 0.8
\]

\[
-\nu_{D1} = -\nu_{G1} - 0.8
\]

\[
\nu_{icm}^{\text{min}} = \nu_{G1} = \nu_{D1} - 0.8 = -2.3V
\]
Output voltage range:

Maximum: Q_7 near edge of saturation

$$|V_{OV7}| = 0.3V$$

$$v_{o_{max}} = 2.5 - |V_{OV7}| = 2.2V$$

Minimum: Q_6 near edge of saturation

$$v_{o_{min}} = -V_{SS} + |V_{OV6}| = -2.5 + 0.3 = -2.2V$$
Folded-Cascode CMOS Op Amp.
(for inspection only)
741 Op-Amp Circuit

Reference current

First stage

$V_{CC} (+15 \text{ V})$

Second stage

Output stage

$R_5 = 39 \text{ k}\Omega$

I_{REF}

$-V_{EE} (-15 \text{ V})$

Q_{12}

Q_{11}

Q_{10}

Q_{9}

Q_{8}

Q_1

Q_2

Q_3

Q_4

Q_6

Q_5

Q_7

Q_{13A}

Q_{13B}

Q_{14}

Q_{15}

Q_{16}

Q_{17}

Q_{18}

Q_{19}

Q_{20}

Q_{21}

Q_{22}

Q_{23}

Q_{24}

$R_4 = 5 \text{ k}\Omega$

$R_3 = 50 \text{ k}\Omega$

$R_2 = 1 \text{ k}\Omega$

$R_1 = 1 \text{ k}\Omega$

$C_c = 30 \text{ pF}$

$R_9 = 50 \text{ k}\Omega$

$R_8 = 100 \text{ \Omega}$

$R_7 = 27 \text{ \Omega}$

$R_6 = 27 \text{ \Omega}$

Out
Functions of Various Transistors

• $Q_{11}, Q_{12},$ and R_5 generate a reference bias current, I_{REF}.

• $Q_{10}, Q_{9},$ and Q_8 bias the input stage, which is composed of Q_1 to Q_7.

• The second gain stage is composed of Q_{16} and Q_{17} with Q_{13B} acting as active load.

• The class AB output stage is formed by Q_{14} and Q_{20} with biasing devices $Q_{13A}, Q_{18},$ and Q_{19}, and an input buffer Q_{23}.

• Transistors $Q_{15}, Q_{21}, Q_{24},$ and Q_{22} serve to protect the amplifier against output short circuits and are normally cut off.