EE 105 Discussion
Welcome!

K. Peleaux & Qianyi Xie
Today

- Linearize a non-linear device
- Selected homework problems
- Selected S&S exercises
If \(f(\gamma) = ax + b \) is a linear function, then \(\frac{d}{d\gamma} f(\gamma) = a, b \) const.

Linearize a non-linear Device

- **Resistor**: \(R = \frac{V}{I} \)
- **Diode**: \(SC = \frac{I}{V} \)
- **MOSFET**: \(SL = \frac{V}{I} \)
2-Port Device

MOSFET

3V+ac

Gate

Source

Drain

5V

\[i_{ds} = f(V_{gs}) \cdot V_{ds} \]

\[R_{os} = \frac{2}{3} \frac{V_{os}}{V_{os}} \]
A random 2-Port Device

\[V_2 = V_2 - V_3 \]
\[V_1 = V_1 - V_3 \]

\[i_\alpha = f(v_2) = \frac{\partial I_4}{\partial V_2} \cdot v_{2,0} \cdot v_2 \]
\[= G_m \cdot v_2 \]

Trans-conductance
HW2 Q5

5. Derive an expression for the current I_L in terms of I_S, R_1, and R_2 for the circuit in Figure PS2.1. Calculate the input and output resistance of this circuit if the OpAmp is ideal.

\[KCL \ @ \ Output \rightarrow \ \bar{i}_{test} = \bar{i}_1 + \bar{i}_2 = 0 \]

\[\Rightarrow Z_{out} = \frac{\bar{v}_{test}}{\bar{i}_{test}} = \frac{0}{0} = \infty \]

\[v^+ = v^- \leq \text{N.F.} \]
4.9 Assuming that the diodes in the circuits of Fig. P4.9 are ideal, find the values of the labeled voltages and currents.

- **Diagram (a)**
 - Diode with a voltage of 3 V and a current of 0.35 mA.
 - Voltage across the diode is 0 V.
 - Current through the 12 kΩ resistor is $I = \frac{3}{12kΩ} = 0.25mA$.

- **Diagram (b)**
 - Diode with a voltage of 3 V and a current of 0.35 mA.
 - Voltage across the diode is 0 V.
 - Current through the 12 kΩ resistor is $I = \frac{3}{12kΩ} = 0.25mA$.

S&S 4.9

Ideal Diode

1) Assumption $V = 0$ \Rightarrow $I = 0$

2) Solve with assumptions

3) Only 1 will work.