EE 105 | Final Review

Kieran Peleaux & Qianyi Xie
Outline

• Exercise 1
 – Op-Amp
 – Feedback
 – Bode plot
• Exercise 2
 – Semiconductor physics
• Exercise 3
 – Device structures and operation
 • BJT & MOSFET
 – Large signal operation (DC operating point)
 – Small signal operation
Outline

• Exercise 4
 – Multi-stage amplifier analysis
 • Inspection analysis
 • Miller effect
 • Mid-band gain
 • High corner frequency (OCTC)
 • Low corner frequency (SCTC)
 • Small-signal limitation and output swing

• Exercise 5
 – Differential pair analysis

• Digital circuit overview and CMOS logic circuit design
Exercise 1 – Ideal Op-amps

- Ideal Op-amp laws
 1. $R_{\text{in}} = \infty$
 2. $R_{\text{out}} = 0$
 3. $A_v = \infty$

\[V_o = A_v (v^+ - v^-) \]

$\Rightarrow V_o = 0 \Rightarrow v^+ = v^-$ only in negative FB
Exercise 1 – Basic Op-amp Configurations

1. Inverting Amplifier

\[\frac{v_o}{v_i} = -\frac{R_2}{R_1} \]

2. Non-inverting Amplifier

\[\frac{v_o}{v_i} = 1 + \frac{R_2}{R_1} \]

3. Integrating Amplifier

\[i_i = \frac{v_i}{R}; \quad v_o = 0 - i_i \frac{1}{sC} \]
\[v_o = -\frac{v_i}{sRC} \Rightarrow \frac{v_i}{v_i} = -\frac{1}{sRC} \]

DC gain is 0

\[\omega_p = \frac{1}{RC} \]

20dB/dec
Exercise 1 – Op-amp Nonidealities

Input offset voltage

\[v_{\text{os}} = \frac{v_{\text{os}} - v_{\text{os}}}{R_1} = \frac{-v_{\text{os}}}{R_1} \]

\[v_{\text{in}} = v_{\text{in}} - v_{\text{os}} = \frac{-v_{\text{os}}}{R_1} \]

\[v_o = v_{\text{os}} - v_{\text{in}}R_2 = v_{\text{os}} + \frac{R_2}{R_1}v_{\text{os}} \]

How to find/measure \(v_{\text{os}} \)?

Ground input & measure \(v_o \).

\[v_{\text{in}} = v_{\text{os}} - v_{\text{os}} = v_{\text{os}} \]

\[v_o = v_{\text{os}} + \frac{R_2}{R_1}v_{\text{os}} \]

Get this from measure \(v_o \)
Exercise 1 – Op-amp Nonidealities

Finite Gain

\[A_v \neq \infty \text{ (open loop gain)} \]

\[v_o = A_v (v^+ - v^-) = -A_v v^- \]

\[i_{in} = \frac{v_{in} - v^-}{R_1} = \frac{v^- - v_o}{R_2} \]

\[\frac{R_2}{R_1} \left(v_{in} + \frac{v_o}{A_v} \right) = -v_o \left(1 + \frac{1}{A_v} \right) \]

\[\frac{v_o}{v_i} = \left| \frac{-R_2/R_1}{1 + \frac{R_2/R_1 + 1}{A_v}} \right| < \left| -\frac{R_2}{R_1} \right| \]

\[\text{closed-loop gain if } A_v \to \infty \]

\[A_v \to \infty \Rightarrow \frac{v_o}{v_i} = -\frac{R_2}{R_1} \]
Exercise 1 – Op-amp Nonidealities

Input Bias Current (& Offset)

\[R_1 \parallel R_2 \text{ to eliminate effects of } \]

\[\text{nonideal} \]

\[\begin{align*}
I_0 & = 0 \\
R_1 & = 0.1I_0 \\
R_2 & = \text{measure for } v_{\text{in}} = 0 \text{ V} \\
R_b & \text{ means for no-offset case, } v_o = 0 \\
\end{align*} \]

Say we have 10\% I_{bias} offset...

\[v_o = (0.1I_b)R_2 \]
Exercise 1 – Frequency Response & Bode Plots

Generic 1 & 2-pole systems

\[|H(s)| = \frac{-A_{dc}}{1 + \frac{s}{\omega_p}} \]

\[\angle H(s) = -A_{dc} \left(1 + \frac{s}{\omega_{p1}}\right) \left(1 + \frac{s}{\omega_{p2}}\right) \]
Exercise 2 – Semiconductor Physics

N & P-Type Semiconductors

\[\text{acceptors ("accept" } e^- \rightarrow h^+) \left[N_A \text{ cm}^{-3} \right] \]

\[\text{dopants are donors ("donate" } e^-) \left[N_0 \text{ cm}^{-3} \right] \]
Exercise 2 – Semiconductor Physics

PN Junctions

\[Q_p = Q_N = \int (N, \text{Volume}) \]

\[P \rightarrow N \]

\[P \rightarrow W_p \]

\[N \rightarrow W_N \]
Exercise 2 – Semiconductor Physics

PN Junctions with external energy

- Fixed charge region
- Drift current due to e^- swept across depletion region
- Diffusion of h^+ due to conc. grad.
- "Just outside of fixed chg. reg."
- Laser creating e^-/h^+ pairs
- R_{load}
Exercise 3

- Device structures and operation
 - BJT & MOSFET
 - Large signal operation (DC operating point)
 - Small signal operation

Regions of operation:
Exercise 3

- Large signal operation (DC operating point)

\[V = +18 \text{ V} \]

\[M_1 \]

\[R_1 = 500 \text{ k}\Omega \]
\[R_2 = 75 \text{ k}\Omega \]
\[R_3 = 1.4 \text{ M}\Omega \]
\[R_4 = 27 \text{ k}\Omega \]

- Assume in saturation
- Solve for the drain current
- Check the assumption
- **If not in saturation, assume in linear region**
- Solve for the drain current
- Check the assumption
- If not in linear region, M1 is cut-off
Exercise 3

- Generate small signal model @ $V_{in} = 1V$

\[I_{in} \propto V_{in}^2 \]
\[I_{out} \propto V_{in}^2 \]
\[I_{out} \propto (2V)^2 \]

\[I = 0.005V^2 + 0.005V \]
\[I = 0.001V^2 + 0.004V \]
\[I = 0.001\sin(2V) \]
Exercise 4

- Exercise 4
 - Multi-stage amplifier analysis
 - Inspection analysis
 - Miller effect
 - Mid-band gain
 - High corner frequency (OCTC)
 - Low corner frequency (SCTC)
 - Small-signal limitation and output swing
4. For the amplifier in Figure PS10.3, assume that M_1 has the properties listed in Table PS10.2, and that Q_1 has the properties listed in Table PS10.1. Find $A_v\left(\frac{v_{out}}{v_s}\right)$, R_{in}, R_{out}, f_L, and f_H.

![Circuit Diagram](image-url)
4. For the amplifier in Figure PS10.3, assume that M_1 has the properties listed in Table PS10.2, and that Q_3 has the properties listed in Table PS10.1. Find A_v, R_{in}, R_{out}, f_s, and f_h.

Figure PS10.3
Exercise 5

- Find $A_{v,d}$, $A_{v,c}$, and **CMRR**

![Circuit Diagram](image.png)
Exercise 5

- Find $A_{v,d}, A_{v,c}$, and **CMRR**

![Figure P9.128](image-url)
Exercise 5

• Find $A_{v,d}, A_{v,c},$ and **CMRR**

![Figure P9.128](image-url)
Digital circuit overview

- Digital circuit component
 - Inverter
 -Latch
 - Flip-flop
 - Pass-gate
 - …
Digital circuit overview

- Ring Oscillator
Digital circuit overview

- CMOS logic