SYLLABUS (COURSE INFORMATION)

Instructor:

Professor Clark Nguyen, 574 Cory Hall, Tel: (510)642-6251
e-mail address: cnguyen@eecs.berkeley.edu

Office Hours: M 3:30-4:30 p.m., W 11-12 a.m. in 574 Cory

Teaching Assistants (TA’s):

Mr. Kieran Peleaux, 373 Cory Hall, Tel: (412)254-3088
E-mail Address: kpeleaux@berkeley.edu

Office Hours: Tu 2-3 p.m., in 367 Cory (except 9/11, 9/18, 10/9, 10/16)
 Th 10-11 a.m., in 557 Cory (location tentative)

Mr. Qianyi Xie, 373 Cory Hall, Tel: (209)790-4387
E-mail address: qianyi_xie@berkeley.edu

Office Hours: Tu 10-11 a.m., in 367 Cory (except 9/11, 9/18, 10/9, 10/16)
 Th 11-12 a.m., in 557 Cory (location tentative)

Lecture: Monday, Wednesday, Friday 2 p.m. - 3 p.m. in 2 LeConte

Discussion Sections:

Section 201: Monday, 9-10 a.m. in 521 Cory
Section 202: Wednesday, 12-1 p.m. in 521 Cory
Section 203: Wednesday, 1-2 p.m. in 521 Cory

Laboratory Sections:

Section 101: Monday, 11 a.m. - 2 p.m. in 125 Cory, TA: Qianyi Xie
Section 102: Tuesday, 11 a.m. - 2 p.m. in 125 Cory, TA: Qianyi Xie
Section 103: Wednesday, 8-11 a.m. in 125 Cory, TA: Kieran Peleaux
Section 104: Wednesday, 5-8 p.m. in 125 Cory, TA: Kieran Peleaux

Course Website:

https://inst.eecs.berkeley.edu/~ee105/fa18/

Office Hours:

Office hours are the primary mechanism for individual contact with Professor Nguyen and the TA’s. All students are strongly encouraged to make use of office hours.

Course Description:

In this age of instant information and interconnectivity, few (if any) devices have had a larger impact than the transistor. Indeed, electronic circuits made using transistors have enabled the vast majority of technological advances over the past decade, from smartphones, to smart homes, to the
ultrafast computers and networks that make the internet possible. Over the years, both analog and digital transistor circuits have contributed to this technological revolution. Analog circuits, which represent information in a continuous fashion (much like our own human perception of the world), have found use as amplifiers for a myriad of applications, from music to radio transmitters. Digital circuits, which represent information in a discrete encoded fashion, are now widely used in applications ranging from digital modelers to the most sophisticated supercomputers. Many of today’s most important circuits, such as those used for wireless communications, utilize a combination of analog and digital circuits—termed “mixed signal circuits”—to enable interference free information transfer, global positioning (GPS) receivers, and commercial satellite links. All of this, again, made possible via the amplifying and switching capabilities of a tiny, nonlinear device—the integrated circuit transistor.

EE 105 is the leader course for the Physical Electronics, MEMS, and Integrated Circuits programs in the EECS Department that aims to teach the basics of semiconductor device physics, modeling, and transistor-level circuit design—both analog and digital—and thereby prepare students for more advanced courses in these areas. The course will cover circuit modeling and operation of field-effect and bipolar junction transistors; properties of nonlinear elements; small-signal and piecewise analysis of nonlinear circuits; analysis and design of basic single- and multi-stage transistor amplifiers; biasing, gain, and frequency response of analog circuits; and digital oscillators, with emphasis on propagation delay and power dissipation.

There will be three lectures, a discussion, and approximately one laboratory session per week. Towards the end of the course, several blocks of laboratory sessions will focus on larger design projects, lasting two to four weeks each. Design projects will entail both design, simulation, and construction/demonstration in the laboratory. Reading assignments (indicated on the COURSE SCHEDULE), problem sets (approximately one per week), two midterm exams, and a final exam will supplement the lectures. SPICE will serve extensively as the principal circuit simulator for assignments and design projects. Although the material covered in the lectures and in the text is fundamentally the same, the perspectives differ, and you are all strongly encouraged to attend both the lecture and complete your reading assignments. Furthermore, there will be occasional announcements in lectures that will affect your laboratory, problem sets, and exams. THEREFORE, COME TO LECTURES.

Lectures, discussion, and laboratory, 4 units.

Prerequisites:

The prerequisites for this course are EE 16A and 16B. It is assumed that you are familiar with the following topics:

- Basic network theory: RLC circuits, analysis methods, step/frequency response, poles and zeros, complex impedance, transient response analysis
- Ideal operational amplifier circuit design and analysis
- Some exposure to digital logic circuits, e.g., inverter operation
- Basic electromagnetics: fields and waves, potential, Gauss’s law

Texts:

Various supplementary material released throughout the course.

Savant, Roden, Carpenter, Electronic Design, 2nd Ed., Benjamin Cummings
Horenstein, Microelectronic *Circuits and Devices*, Prentice Hall

These texts could be helpful as supplementary material in the event you need an alternative explanation from Sedra & Smith’s.

Reading Assignments:

Reading assignments include sections of the required textbook, laboratory readings, distributed readings, and supplementary notes handed out in lecture. The COURSE SCHEDULE indicates reading assignments. Problem assignments might also specify reading assignments where appropriate. Distributed notes will supplement topics for which lecture coverage is substantially different from the textbook. Students are responsible for all material in the reading. In particular, the scope of coverage for problem sets, the midterm, the project, and the final examination includes the reading assignments as well as lecture material.

Problem Sets:

There will be a number of problem sets over the course of the semester, assigned approximately once per week. Each new problem set will normally post on the course website on a Friday and be due the next Friday. Turn in problem sets to the EE105 box near 125 Cory by 12 noon on the due date. Solutions will be posted on the web.

Laboratory:

Laboratories 1-4 will be online in the “Labs” page on the course website. Labs 5 and 6 are design projects that will post to the website during the latter half of the semester. The laboratory exercises aim to reinforce the material covered in lecture and in problem sets. Laboratory sessions of 12 to 14 students will meet weekly. For Labs 1-4 students will typically work in pairs; for the two design problems during the latter part of the term, students may work individually or in pairs. The topics covered in the labs are coordinated with the lectures, but will lag somewhat.

Laboratory assignments will typically consist of three sections:

Preliminary Discussions and Problems: intended to familiarize you with the laboratory topic, and in some cases, perform some design tasks

Laboratory Procedure: usually a series of measurements to illustrate specific circuit topologies and characteristics

General Questions: intended to encourage you to generalize and apply their laboratory experiences

It is vital that you read the entire laboratory and, where appropriate, do the preliminary problems, prior to their laboratory sessions! Failure to do so will make it difficult to complete the assignment in the time available. Pre-lab problems are due at the beginning of the corresponding lab session.

Each laboratory has Result Sheets to simplify the grading process. In most cases, the remainder of the material should be included in a laboratory report, attached to the Result Sheets. Although you will be performing the laboratory procedures in pairs, each student must turn in his/her own report. Laboratory reports will be due in the subsequent laboratory session. Your lab TA will provide you with more information.

One of the main purposes of the course is to convey some of the trade-offs involved in analog and digital circuit design (e.g., gain vs. bandwidth, speed vs. power). For this reason, the last two laboratory assignments will take the form of open-ended design problems. In general, these labs will provide a set of specifications. You will be required to select a circuit topology, do a paper design “by hand” to determine the validity of the topology and any relevant parameters (operating points, component values, etc.), perform computer simulations to validate the paper design, and physically implement the design
to demonstrate that it meets the specifications. Note that these design problems require a considerable amount of time to complete and take the place of two or more regular assignments. They also receive a grading weight roughly in proportion to the time allotted for completion. You are strongly encouraged to start on these labs as soon as they become available.

The grading policy for the laboratory assignments are as follows:

Technical Content: 90%
Document Quality: 10%

The “document quality” category aims to encourage you to prepare your reports in a manner that makes them readable and easy to evaluate.

For the first four labs (not the design projects), the “technical content” is broken down as follows:

Prelab: 30%
Report: 60%

The overall point totals assigned to the laboratories for grading purposes are as follows:

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 1: Laboratory Introduction—Review of Passive Networks</td>
<td>100</td>
</tr>
<tr>
<td>Lab 2: Characterization of the 741 Op-Amp</td>
<td>100</td>
</tr>
<tr>
<td>Lab 3: Configurable Amplifiers Using Small-Signal MOS Resistors</td>
<td>100</td>
</tr>
<tr>
<td>Lab 4: Biasing of Bipolar Transistors</td>
<td>100</td>
</tr>
<tr>
<td>Lab 5: Design Problem 1 — Common Emitter Amplifier</td>
<td>200</td>
</tr>
<tr>
<td>Lab 6: Design Problem 2 — to be assigned</td>
<td>300</td>
</tr>
<tr>
<td>Laboratory Performance</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1000</td>
</tr>
</tbody>
</table>

The “laboratory performance” category above covers students’ activities in the laboratory sessions themselves. Poor attendance, disruptive behavior, chronic lateness, etc. will result in a loss of credit. In addition, in any lab where physical circuits are constructed, minor (but debilitating) construction errors nearly always happen. It would be unrealistic to expect your circuit to work the first time, immediately after construction. Inevitably, some amount of debugging is required. Your ability to debug your own circuits will also reflect on your “laboratory performance” grade. In a way, circuit debugging is among the most important skills that you can learn from this laboratory. The ability to debug often indicates a superior understanding of the circuit under construction, as well as of the equipment used to measure the needed parameters.

Midterms:

Your COURSE SCHEDULE indicates the approximate dates for the midterm exams in this course. We will try to adhere to these dates so much as possible. Both midterms will be closed book (no books, notes, or other written material), but you will be able to use a calculator. The midterms might be held either late afternoon or early evening (to be decided in class), and will be 1 or 1.5 hours each.
Final Exam:

The final exam will be comprehensive, covering all of the material in the course. This includes everything covered in problem sets, lectures, and readings. The exam will take place during the Examination Period at the scheduled time shown in your COURSE SCHEDULE.

Computer Accounts/CAD Tools:

To get a computer account for this course, go to http://inst.eecs.berkeley.edu/webacct. You can login using CalNet and get your account immediately. You can return to this link if you forget your login name or password. This procedure will work for all enrolled, waitlisted, and cross-listed students. If you are unable to login, please notify an instructor.

The supplementary text, SPICE: A Guide to Circuit Simulation & Analysis Using PSpice by Tuinenga, is a useful aid to those students seeking more information on SPICE. SPICE is the most widely used circuit simulator in the field.

Cardkey Access:

Cardkey access to the labs is automatic for enrolled students. If you are a concurrent enrollment student, please send me your name and SID number, so you can get access.

Grading Policy:

Course grades will use the following tentative grading formula.

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem Sets:</td>
<td>10%</td>
</tr>
<tr>
<td>Laboratory/Projects:</td>
<td>35%</td>
</tr>
<tr>
<td>Midterm Exam 1:</td>
<td>15%</td>
</tr>
<tr>
<td>Midterm Exam 2:</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam:</td>
<td>25%</td>
</tr>
</tbody>
</table>