Consider a transistor biased to operate in the active mode at a dc collector current \(I_C\). Calculate the collector signal current as a fraction of \(I_C\) (i.e., \(i_c/I_c\)) for input signals \(v_m\) of +1 mV, -1 mV, +2 mV, -2 mV, +5 mV, -5 mV, +8 mV, -8 mV, +10 mV, -10 mV, +12 mV, and -12 mV. In each case do the calculation two ways:

(a) using the exponential characteristic, and
(b) using the small-signal approximation.

Present your results in the form of a table that includes a column for the error introduced by the small-signal approximation. Comment on the range of validity of the small-signal approximation.

An npn BJT with grounded emitter is operated with \(V_{BE} = 0.700\) V, at which the collector current is 0.5 mA. A 5-kΩ resistor connects the collector to a +5-V supply. What is the resulting collector voltage \(V_C\)? Now, if a signal applied to the base raises \(v_{BE}\) to 705 mV, find the resulting total collector current \(i_c\) and total collector voltage \(v_C\) using the exponential \(i_C = v_C/R_C\) relationship. For this situation, what are \(v_{m}\) and \(v_C\)? Calculate the voltage gain \(v_C/v_m\). Compare with the value obtained using the small-signal approximation, that is, \(-g_m R_C\).

A transistor with \(\beta = 100\) is biased to operate at a dc collector current of 0.5 mA. Find the values of \(g_m\), \(r_n\), and \(r_e\). Repeat for a bias current of 50 μA.

A pnp BJT is biased to operate at \(I_C = 1.0\) mA. What is the associated value of \(g_m\)? If \(\beta = 100\), what is the value of the small-signal resistance seen looking into the emitter \((r_e)\)? Into the base \((r_n)\)? If the collector is connected to a 5-kΩ load, with a signal of 5-mV peak applied between base and emitter, what output signal voltage results?

A designer wishes to create a BJT amplifier with a \(g_m\) of 30 mA/V and a base input resistance of 3000 Ω or more.

What collector-bias current should he choose? What is the minimum \(\beta\) he can tolerate for the transistor used?

A transistor operating with nominal \(g_m\) of 40 mA/V has a \(\beta\) that ranges from 50 to 150. Also, the bias circuit, being less than ideal, allows a ±20% variation in \(I_C\). What are the extreme values found of the resistance looking into the base?

In the circuit of Fig. 7.20, \(V_{BE}\) is adjusted so that \(V_C = 1\) V. If \(V_{CC} = 3\) V, \(R_C = 2\) kΩ, and a signal \(v_m = 0.005\) sin \(\omega t\) volts is applied, find expressions for the total instantaneous quantities \(i_c(t)\), \(v_C(t)\), and \(i_B(t)\). The transistor has \(\beta = 100\). What is the voltage gain?

We wish to design the amplifier circuit of Fig. 7.20 under the constraint that \(V_{CC}\) is fixed. Let the input signal \(v_m = \tilde{V}_m\) sin \(\omega t\), where \(\tilde{V}_m\) is the maximum value for acceptable linearity. For the design that results in the largest signal at the collector, without the BJT leaving the active region, show that

\[
R_C I_C = (V_{CC} - 0.3) / \left(1 + \frac{\tilde{V}_m}{V_T}\right)
\]

and find an expression for the voltage gain obtained. For \(V_{CC} = 3\) V and \(\tilde{V}_m = 5\) mV, find the dc voltage at the collector, the amplitude of the output voltage signal, and the voltage gain.

The table below summarizes some of the basic attributes of a number of BJTs of different types, operating as amplifiers under various conditions. Provide the missing entries. (Note: Isn’t it remarkable how much two parameters can reveal?)

A BJT is biased to operate in the active mode at a dc collector current of 1 mA. It has a \(\beta\) of 100 and \(V_A\) of 100 V. Give the four small-signal models (Figs. 7.25 and 7.27) of the BJT complete with the values of their parameters.

<table>
<thead>
<tr>
<th>Transistor</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>1.00</td>
<td>100</td>
<td>1.00</td>
<td>∞</td>
<td>0.90</td>
<td>5</td>
<td>1.10</td>
</tr>
<tr>
<td>β</td>
<td>1.00</td>
<td>1.00</td>
<td>0.020</td>
<td>25</td>
<td>100</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>(I_C) (mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(I_E) (mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(g_m) (mA/V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r_e) (Ω)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(r_n) (Ω)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SIM = Multisim/PSpice; * = difficult problem; ** = more difficult; * = very challenging; D = design problem**
than 10 mV). Find appropriate values for R_e and R_C. What is the value of voltage gain realized from signal source to output?

7.58 The transistor in the circuit shown in Fig. P7.58 is biased to operate in the active mode. Assuming that β is very large, find the collector bias current I_C. Replace the transistor with the small-signal equivalent-circuit model of Fig. 7.26(b) (remember to replace the dc power supply with a short circuit). Analyze the resulting amplifier equivalent circuit to show that

\[
\frac{v_{o1}}{v_i} = \frac{R_e}{R_e + r_e}
\]

\[
\frac{v_{o2}}{v_i} = \frac{-\alpha R_C}{R_e + r_e}
\]

Find the values of these voltage gains (for $\alpha \simeq 1$). Now, if the terminal labeled v_{o1} is connected to ground, what does the voltage gain v_{o1}/v_i become?

7.59 An amplifier with an input resistance of 100 kΩ, an open-circuit voltage gain of 100 V/V, and an output resistance of 100 Ω is connected between a 20-kΩ signal source and a 2-kΩ load. Find the overall voltage gain G_v. Also find the current gain, defined as the ratio of the load current to the current drawn from the signal source.

7.60 Specify the parameters R_{in}, A_{ve}, and R_e of an amplifier that is to be connected between a 100-kΩ source and a 2-kΩ load and is required to meet the following specifications:

(a) No more than 5% of the signal strength is lost in the connection to the amplifier input;

(b) If the load resistance changes from the nominal value of 2 kΩ to a low value of 1 kΩ, the change in output voltage is limited to 5% of nominal value; and

(c) The nominal overall voltage gain is 10 V/V.

7.61 Figure P7.61 shows an alternative equivalent-circuit representation of an amplifier. If this circuit is to be equivalent to that in Fig. 7.34(b) show that $G_m = A_{ve}/R_e$. Also convince yourself that the transconductance G_m is defined as

\[
G_m = \left. \frac{i_v}{v_i} \right|_{R_L = 0}
\]

and hence is known as the short-circuit transconductance. Now, if the amplifier is fed with a signal source (v_{sig}, R_{sig}) and is connected to a load resistance R_L, show that the gain of the amplifier proper A_v is given by $A_v = G_m (R_e || R_L)$ and the overall voltage gain G_v is given by

\[
G_v = \frac{R_{in}}{R_{in} + R_{sig}} G_m (R_e || R_L)
\]

7.62 An alternative equivalent circuit of an amplifier fed with a signal source (v_{sig}, R_{sig}) and connected to a load R_L is shown in Fig. P7.62. Here G_{ve} is the open-circuit overall voltage gain,

\[
G_{ve} = \left. \frac{v_o}{v_{sig}} \right|_{R_L = \infty}
\]

SIM = Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem
(b) Show that including R_c reduces the magnitude of A_m by a certain factor. What is this factor?
(c) Show that including R_c reduces f_l by the same factor as in (b) and thus one can use R_c to trade off gain for bandwidth.
(d) For $I = 0.25$ mA, $R_c = 10$ kΩ, and $C_e = 10$ µF, find $|A_m|$ and f_l with $R_c = 0$. Now find the value of R_c that lowers f_l by a factor of 10. What will the gain become? Sketch on the same diagram a Bode plot for the gain magnitude for both cases.

Section 10.2: Internal Capacitive Effects and the High-Frequency Model of the MOSFET and the BJT

10.13 Refer to the MOSFET high-frequency model in Fig. 10.12(a). Evaluate the model parameters for an NMOS transistor operating at $I_D = 200$ µA, $V_{GB} = 1$ V, and $V_{DS} = 1.5$ V. The MOSFET has $W = 20$ µm, $L = 1$ µm, $r_{as} = 8$ nm, $\mu_n = 450$ cm2/V·s, $\gamma = 0.5$ V$^{1/2}$, $2\phi_F = 0.65$ V, $\lambda = 0.05$ V$^{-1}$, $V_T = 0.7$ V, $C_{so} = C_{do} = 20$ fF, and $L_{ov} = 0.05$ µm. [Recall that $g_{ms} = \chi g_{ns}$, where $\chi = \gamma/(2\sqrt{2\phi_F + V_{gs}}), and that $e_{ns} = 3.45 \times 10^{-11}$ F/m.]

10.14 Find f_T for a MOSFET operating at $I_D = 200$ µA and $V_{OV} = 0.3$ V. The MOSFET has $C_{gs} = 25$ fF and $C_{sd} = 5$ fF.

10.15 Starting from the expression of f_T for a MOSFET,

$$f_T = \frac{g_m}{2\pi(C_{gs} + C_{sd})}$$

and making the approximation that $C_{gs} \gg C_{sd}$ and that the overlap component of C_{gs} is negligibly small, show that

$$f_T \approx \frac{1}{2\pi L} \sqrt{\frac{\mu_n J_D}{2C_{mn} W L}}$$

Thus note that to obtain a high f_T from a given device, it must be operated at a high current. Also note that faster operation is obtained from smaller devices.

10.16 Starting from the expression for the MOSFET unity-gain frequency,

$$f_T = \frac{g_m}{2\pi(C_{gs} + C_{sd})}$$

and making the approximation that $C_{gs} \gg C_{sd}$ and that the overlap component of C_{gs} is negligibly small, show that for an n-channel device

$$f_T \approx \frac{3\mu_n V_{OV}}{4\pi L^2}$$

Observe that for a given channel length, f_T can be increased by operating the MOSFET at a higher overdrive voltage. Evaluate f_T for devices with $L = 0.5$ µ m operated at overdrive voltages of 0.2 V and 0.4 V. Use $\mu_n = 450$ cm2/V·s.

10.17 It is required to calculate the intrinsic gain A_0 and the unity-gain frequency f_T of an n-channel transistor fabricated in a 0.13-µm CMOS process for which $L_{ov} = 0.1$ µ m, $\mu_n = 400$ cm2/V·s, and $V_T = 5$ V/µm. The device is operated at $V_{OV} = 0.2$ V. Find A_0 and f_T for devices with $L = L_{min}$, $2L_{min}$, $3L_{min}$, $4L_{min}$, and $5L_{min}$. Present your results in a table. (Hint: For f_T, use the approximate expression $f_T \approx \frac{3\mu_n V_{OV}}{4\pi L^2}$.)

10.18 A particular BJT operating at $I_C = 0.5$ mA has $C_e = 1$ pF, $C_o = 8$ pF, and $\beta = 100$. What are f_T and f_p for this situation?

10.19 For the transistor described in Problem 10.18, C_t includes a relatively constant depletion-layer capacitance

<table>
<thead>
<tr>
<th>Transistor</th>
<th>I_D (mA)</th>
<th>r_e(Ω)</th>
<th>g_m(mAV)</th>
<th>r_s(kΩ)</th>
<th>β_0</th>
<th>f_T(MHz)</th>
<th>C_e(pF)</th>
<th>C_o(pF)</th>
<th>f_p(MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>2</td>
<td>25</td>
<td>2.5</td>
<td>100</td>
<td>500</td>
<td>2</td>
<td>10.7</td>
<td>9</td>
<td>80</td>
</tr>
<tr>
<td>(b)</td>
<td>10</td>
<td>0.1</td>
<td>800</td>
<td>100</td>
<td>150</td>
<td>2</td>
<td>10.7</td>
<td>9</td>
<td>80</td>
</tr>
<tr>
<td>(c)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>500</td>
<td>2</td>
<td>10.7</td>
<td>9</td>
<td>80</td>
</tr>
</tbody>
</table>

* = difficult problem; ** = more difficult; *** = very challenging; D = design problem
of 2 pF. If the device is operated at $I_c = 0.25$ mA, what does its f_r become?

10.20 An npn transistor is operated at $I_c = 1$ mA and $V_{ce} = 2$ V. It has $\beta_0 = 100$, $V_A = 50$ V, $\tau_f = 30$ ps, $C_{je} = 20$ fF, $C_{re} = 30$ fF, $V_{oc} = 0.75$ V, $m_{cm} = 0.5$, and $r_s = 100$ Ω. Sketch the complete hybrid-π model, and specify the values of all its components. Also, find f_r.

10.21 Measurement of h_{fe} of an npn transistor at 50 MHz shows that $|h_{fe}| = 10$ at $I_c = 0.2$ mA and 12 at $I_c = 1.0$ mA. Furthermore, $C_{c's}$ was measured and found to be 0.1 pF. Find f_r at each of the two collector currents used. What must τ_f and $C_{c's}$ be?

10.22 A particular small-geometry BJT has f_T of 10 GHz and $C_{c's} = 0.1$ pF when operated at $I_c = 1.0$ mA. What is $C_{c's}$ in this situation? Also, find g_m. For $\beta = 120$, find r_s and f_T.

10.23 For a BJT whose unity-gain bandwidth is 2 GHz and $\beta_0 = 200$, at what frequency does the magnitude of h_{fe} become 40? What is f_T?

*10.24 For a sufficiently high frequency, measurement of the complex input impedance of a BJT having (ac) grounded emitter and collector yields a real part approximating r_s. For what frequency, defined in terms of ω_s, is such an estimate of r_s good to within 10% under the condition that $r_s \leq r_{in}/10$?

10.25 Complete the table entries on the previous page for transistors (a) through (g), under the conditions indicated. Neglect r_s.

Section 10.3: High-Frequency Response of the CS and CE Amplifiers

10.26 In a particular common-source amplifier for which the midband voltage gain between gate and drain (i.e., $-g_m R_{ds}'$) is -39 V/V, the NMOS transistor has $C_{gs} = 1.0$ pF and $C_{ds} = 0.1$ pF. What input capacitance would you expect? For what range of signal-source resistances can you expect the 3-dB frequency to exceed 1 MHz? Neglect the effect of R_C.

D 10.27 In the circuit of Fig. P10.27, the voltage amplifier is ideal (i.e., it has an infinite input resistance and a zero output resistance).

(a) Use the Miller approach to find an expression for the input capacitance C_{in} in terms of A and C.

(b) Use the expression for C_{in} to obtain the transfer function $V_o(s)/V_{in}(s)$.

(c) If $R_{sg} = 1$ kΩ, and the gain V_o/V_{sg} is to have a dc value of 40 dB and a 3-dB frequency of 100 kHz, find the values required for A and C.

(d) Sketch a Bode plot for the gain and use it to determine the frequency at which its magnitude reduces to unity.

10.28 An ideal voltage amplifier having a voltage gain of -1000 V/V has a 0.2-pF capacitance connected between its output and input terminals. What is the input capacitance of the amplifier? If the amplifier is fed from a voltage source V_{sg} having a resistance $R_{sg} = 1$ kΩ, find the transfer function V_o/V_{sg} as a function of the complex-frequency variable s and hence the 3-dB frequency f_T and the unity-gain frequency f_T.

D 10.29 A design is required for a CS amplifier for which the MOSFET is operated at $g_m = 5$ mA/V and has $C_{gs} = 5$ pF and $C_{gs} = 1$ pF. The amplifier is fed with a signal source having $R_{sg} = 1$ kΩ, and R_s is very large. What is the largest value of R_s for which the upper 3-dB frequency is at least 6 MHz? What is the corresponding value of midband gain and gain–bandwidth product? If the specification on the upper 3-dB frequency can be relaxed by a factor of 3, that is, to 2 MHz, what can A_M and GB become?

10.30 Reconsider Example 10.3 for the situation in which the transistor is replaced by one whose width W is half that of the original transistor while the bias current remains unchanged. Find modified values for all the device parameters along with A_M, f_M, and the gain–bandwidth product, GB. Contrast this with the original design by calculating the ratios of new value to old for W, V_{GS}, g_m, C_{gs}, C_{ds}, C_{in}, A_M, f_M, and GB.

D *10.31 In a CS amplifier, such as that in Fig. 10.3(a), the resistance of the source R_{sg} is 100 kΩ, amplifier

SUM = Multisim/SPICE; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem