
<u>EE 105</u>: Microelectronic Devices & Circuits <u>Lecture 10w</u>: Semiconductors

EE 105: Microelectronic Devices & Circuits Lecture 10w: Semiconductors

Semiconductors:

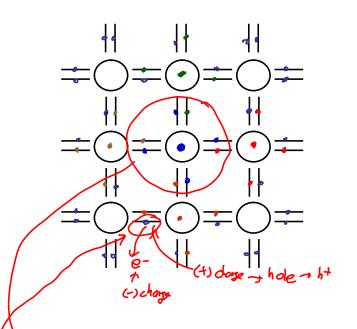
- To better understand the physical operation of diodes (and later, transistors), need to understand semiconductors
- Best to describe them in the context of other materials, like conductors and insulators

Materials:

- Made up of atoms
- ♦ In solids, the atoms often bond together in a regular lattice
- ♦ The atoms in the lattice happiest in a lowest energy state, i.e., with filled orbitals
- ♦ Go to periodic table supplement

1. Conductors:

- Close-packed atoms in a cloud of electrons
- Ex. Na (sodium) a metal


& Orbital below valence shell already filled, so ecan leave and be shared by all atoms in the solid

Va

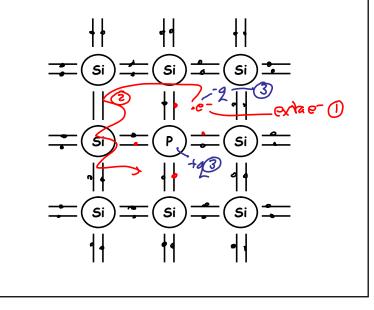
hucleus (11 protes)

2. Insulators:

- Held together very strongly in a regular lattice by strong covalent bonds
- · Lowest energy state when the valence shells of each atom are filled

- Atom happy w/ an effectively filled valence band, so e's not free to move about
- An increase in energy can allow an e^- to break free into a higher energy free state in which an electric field can move the e⁻
- For example, high enough temperature generates a free e^- and h^+ pair, each of which is free to move under an applied electric field

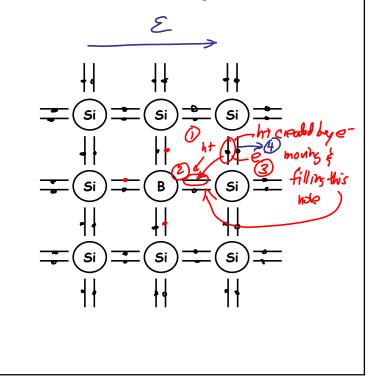
<u>EE 105</u>: Microelectronic Devices & Circuits <u>Lecture 10w</u>: Semiconductors

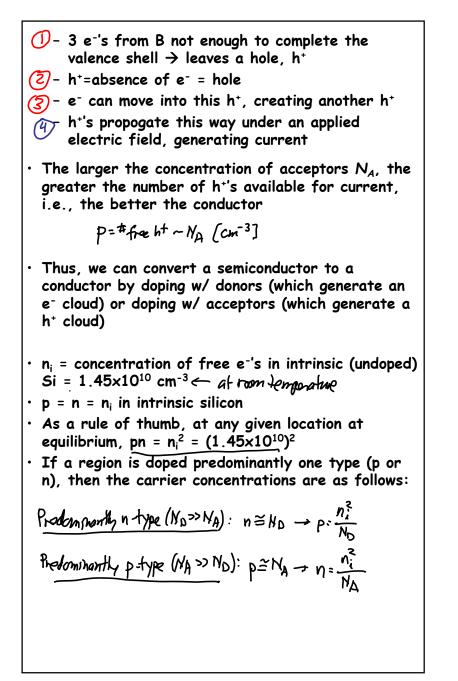

CTN 9/14/18

3. Semiconductors:

- Basically the same as insulators, except they require smaller temperatures to free e⁻s
- For most purposes, they are just like insulators ... until they are doped, at which point they become like metals

Doping:


- A semiconductor converts to a conductor when one adds certain impurities that substitute for Si atoms
- Type types of substitutional impurities
 - bonors
 - \clubsuit Acceptors
- 1. <u>Donors</u>:
- Elements with 5 valence e^{-'}s, e.g., phosphorous (P) and Arsenic (As)


- O- 4 e^{-'s} from P contribute to covalent bonds, leaving one extra e⁻
- 🜔 extra e⁻ can now move around
- 3)- When e⁻ moves away from the donor atom (in this case, P), the donor atom effectively represents a (+) static charge
- The larger the concentration of donors N_D , the greater the number of e^{-'s} available to generate the e⁻ cloud, i.e., the better the conductor

n = 10f free e-4 ~ N₀ [cm⁻³]

- 2. Acceptors:
- Elements w/ 3 valence e^{-'}s, e.g., Boron (B)

<u>EE 105</u>: Microelectronic Devices & Circuits <u>Lecture 10w</u>: Semiconductors

Typer of	Cuments in En	iconductors	
⇒tw	o paraible cunat a	compensates:	
T Write	Current -	•	