Announcements:
- HW#5 online and due Friday via Gradescope
- Lab#3 this week
 - Due week after next (since next week is the first midterm exam)
- Midterm 1: Friday, Oct. 5, from 5-6:30 p.m., in 277 Cory
- Lab Sections on different grading curves
 - Fairer for earlier lab sections
- Will be collecting names and student ID numbers for those who do not yet have access to the lab
- Lecture Topics:
 - MOSFETs
 - Channel Length Modulation
 - Body Effect
 - Bipolar Junction Transistor (BJT)
 - Regions of Operation
- Last Time:
 - Started into channel length modulation
 - Now, continue with this ...

\(\text{Saturation Region:} \quad (V_{DS} \geq V_{GS} - V_{TH} \Rightarrow 0) \)

As \(V_{DS} \) increases, the voltage across the gate-to-substrate capacitance near the drain:

\((V_{GS} - V_{TH} - V_{DN}) \rightarrow 0 \)

At this point, \(i_{DS} \) has reached its maximum!

\[\text{Ideal} \]

Plug in \(V_{GS} - V_{TH} - V_{DN} = 0 \rightarrow V_{DS} = V_{GS} - V_{TH} \) into the \(i_{DS} \) equation:

\[i_{DS} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{TH})^2 \quad \text{for} \quad V_{DS} = V_{GS} - V_{TH} \]
as V_{DS} increases, i_{DS} remains constant; however, due to 2nd-order effects, i_{DS} actually still rises a bit

Reason: channel length modulation

Example: $V_{GS} = 1V, V_{DS} = 4V \rightarrow V_{DS} - V_{TH} = 0.3V \rightarrow L_{sat} = 1V - V_{TH} = 0.7V$

$Q = \frac{C_L}{L} (V_{GS} - V_{TH})$

$\Delta L = L - L'$ (i.e., it gets smaller)

\[i_{DS} = \frac{1}{2} \mu \frac{W}{L} \left(V_{GS} - V_{TH} \right)^2 \]

for short-channel devices

\[\lambda \leq \text{channel length modulation parameter} \quad (0.001 \text{ } \text{V}^{-1} \leq \lambda \leq 0.1 \text{ } \text{V}^{-1}) \]
Body Effect (Substrate Sensitivity)

- threshold voltage, V_{TN}, is a function of substrate bias voltage: V_{SB}
- Region: (simple region)
 - as $V_{SB} \rightarrow$ max, channel depletion region gets larger (i.e., it can hold more charge)
 - need more V_{GS} to permit I_{ch} to flow

For a typical NMOS Transistor:

- $-5V \leq V_{GS} \leq 5V$ but usually $0.7V$
- $V_{TH} = \phi_T$ for enhancement mode NMOS
- $V_{TH} = -\phi_T$ for depletion mode NMOS

$0 \leq \phi \leq 3.3V \rightarrow$ typically $0.5V$

$0.3V \leq 2\phi_T \leq 1V \rightarrow$ for V_{GS}, generally $0.6V$

PMOS Transistors

- Basically, the reverse of NMOS transistors
- Physics basically the same, but the carriers are now h^+ and the voltage polarities reverse

$V_{PP} = \phi_T$ for enhancement ϕ_T

$V_{PP} = (-\phi_T)$ for depletion ϕ_T

$V_{PP} = (-\phi_T)$ for depletion region

$V_{PP} = \phi_T$ for enhancement region
PMOS Transistor Model Summary

\[i_{SD} = \frac{1}{2} \mu_p C_{ox} W \left(V_{GS} - V_{TP} \right)^2 \left(1 + \lambda N_{SD} \right) \]

1. **Cutoff Region:** \(N_{SG} \leq -V_{TP} \)
 - \(i_{SD} = 0 \)

2. **Linear (or Triode) Region:** \(N_{SG} + V_{TP} \geq N_{SD} \geq 0 \)
 - \(i_{SD} = K_p \left(N_{SG} + V_{TP} - \frac{N_{SD}}{2} \right) N_{SD} \)
 - \(= \frac{1}{2} \mu_p C_{ox} W \left(N_{SG} + V_{TP} - \frac{N_{SD}}{2} \right) N_{SD} \)

3. **Saturation Region:** \(N_{SD} \geq N_{SG} + V_{TP} \geq 0 \)
 - \(i_{SD} = \frac{1}{2} \mu_p C_{ox} W \left(N_{SG} + V_{TP} \right)^2 \left(1 + \lambda N_{SD} \right) \)
 - \(= \frac{K_p}{2} \left(N_{SG} + V_{TP} \right)^2 \left(1 + \lambda N_{SD} \right) \)

where for all regions:

- \(K_p \) = \(k_t W \) / \(L \)
- \(i_G = 0 \) and \(i_B = 0 \)
- \(V_{TP} = V_{TO} - \gamma \left(\sqrt{V_{GS} + 2 \phi_f} - \sqrt{2 \phi_f} \right) \)
- \(\mu_p \) = hole mobility in the channel
- \(C_{ox} \) = gate oxide per unit area
- \(V_{TO} \) = threshold voltage w/ \(V_{SB} = 0 \)
- \(\gamma \) = body effect parameter
- \(2 \phi_f \) = built-in surface potential \(\approx 0.6 \)
MOSFET CV Curve

Simple Theory

Depletion Region (Fixed Neg. Charge)

Inversion Charge (Free Neg. Charge)

Thus, the inversion charge thins down towards the drain.

Q'(x = 0) = \text{Cox}(V_{GS} - V_{TH})

Q'(x = L) = \text{Cox}(V_{GS} - V_{TN} - V_{DS})

Thus, the inversion charge thins down towards the drain.

@ x = 0:

\[C_G = \text{Cox} \]

\[C_{Gd} = \text{Cox} \]

\[C_{Gd} = \frac{dQ}{dV} = \frac{dQ_n}{dV} \text{ when inversion charge can keep up with the frequency} \]