<u>EE 105</u>: Microelectronic Devices & Circuits <u>Lecture 18w</u>: Bipolar Junction Transistors III

Copyright © 2018 Regents of the University of California

<u>EE 105</u>: Microelectronic Devices & Circuits <u>Lecture 18w</u>: Bipolar Junction Transistors III

βig=αiε (for pnp) VEB(m) -Example. (exactitude) $E_{xample}. (exachibide)$ $V_{cc} = +15$ find the DC operative pf. ic $J = R_{d} = 5k\Sigma$ find the DC roltoges at ac $J = R_{d} = 5k\Sigma$ (i.e., Find the DC roltoges at each node and the currents through each branch) ac V_{BE} find the DC roltoges at each node and the currents through each branch) $V_{EE} = -15V$ $T_{E} = -\frac{V_{RE} - V_{EE}}{R_{E}}$ $V_{EE} = -15V$ $T_{c} = \alpha T_{E} = \alpha (-V_{EE} - V_{BE})$ F_{or} in Xsistor: $\beta = 100$ $T_{s} = 2kI0^{-15}A$ $T_{s} = mV$ (nonlinear equation) Siteration, numerical -> partil ... $\Rightarrow Get V_{BE} = 0.717V \qquad V_B = 0V$ $\Rightarrow I_{E} = \frac{15 - 0.717}{7K} = 2.04mA \qquad V_E = -0.717V$ $\Rightarrow I_{C} = \propto I_{E} = (\frac{160}{101}) I_{E} = 2.02mA \qquad V_{C} = 1.5 - I_{C}(5K) = 4.9V$ => IB= IC= 0.02 mA

$$= \text{What if we don't know } \beta \text{ is accurately } \rightarrow \text{No need}$$

$$= 0 \text{ the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximations.} \\ = 0 \text{ of the problem again works approximation of the problem again works.} \\ = 0 \text{ of the problem again works approximation of the problem again works.} \\ = 0 \text{ of the problem again works approximation of the problem again works.} \\ = 0 \text{ of the problem again works approximation of the problem again works.} \\ = 0 \text{ of the problem again works approximation of the problem again works.} \\ = 0 \text{ of the problem again works approximation of the problem again again works.} \\ = 0 \text{ of the problem again a$$

Copyright © 2018 Regents of the University of California

CTN 10/3/18

<u>EE 105</u>: Microelectronic Devices & Circuits <u>Lecture 18w</u>: Bipolar Junction Transistors III

Copyright © 2018 Regents of the University of California