Lecture 28: Inspection Analysis & Miller Effect

• Announcements:
 • HW#9 online and due Friday via Gradescope
 • Extend Lab#5 due date by one week
 ◦ Now due Tuesday, Nov. 6, 5 p.m.
 • Hopefully, you watched Monday’s video lecture

• Lecture Topics:
 ◦ Intro. to Inspection Analysis
 ◦ C.E. Design Project Hints
 ◦ Other Amplifier Configurations
 ◦ Generally-Loaded Transistor

• Last Time:
 • Started introduction to inspection analysis
 • Now continue with this …
2nd Stage:

\[
\frac{V_D}{V_D} = \frac{V_D}{V_D} = \frac{-(g_m(R_C)R_E)}{R_C} = \frac{V_D}{V_D}
\]

from monop.

\[
R_{in}R_{out} = R_C R_E
\]

\[
\frac{V_D}{V_D} = \frac{R_C R_E}{V_D + R_C R_E}
\]

High-frequency response:

Not shielded! In feedback!

\[
C_{out} = \text{junction capacitance}
\]

\[
R_{in} = \text{shunted (easy)}
\]

\[
R_{out} = \text{shunted (easy)}
\]

Output swing:

\[
V_C = \text{set by } V_R
\]

\[
V_E = V_T - V_{BEQ}
\]

Gain:

\[
\frac{V_C}{V_T} = \frac{V_E}{V_T}
\]

Won't work: \(V_C \uparrow \rightarrow V_{CEQ} \rightarrow V_C \uparrow \rightarrow \text{isolation gain} \)

\[
\frac{V_C}{V_T} = \frac{V_E}{V_T}
\]

Gain:

\[
\frac{V_C}{V_T} = \frac{V_E}{V_T}
\]

\[
0.2V = V_{CEQ} \text{ (cut)}
\]

Nonlinear clipping.
The Miller Effect

- Useful to transform a circuit with feedback into a simpler circuit without feedback.

Formal Derivation:

\[
\begin{align*}
 i_1 & = \frac{Y(N_1 - N_2)}{N_1} = Y(N_1 - N_2) \\
 i_2 & = \frac{Y(N_1 - N_2)}{N_2} = Y(N_1 - N_2)
\end{align*}
\]

\(Y_1 = Y(1 - k)\)

Find \(i_2\): (equate for both circuits)

\(i_2 = Y(N_1 - N_2)\)

\(i_2 = Y(N_1 - N_2)\)

\(\Rightarrow\) no longer have \(R_B\) \(\Rightarrow\) easy...

\(C_m \cdot \frac{1}{1 - k} = C_m\)

C.E. Inspection Analysis for HF Using the Miller Effect

- **Gain:** \(g_m \cdot R_L\)

- **Miller X-form:**

- **Total:**

- All terms from previous analysis captured here!

(Same answer... no need to deal w FB)