

Copyright © 2018 Regents of the University of California

Copyright © 2018 Regents of the University of California

Copyright © 2018 Regents of the University of California

[Unudly, for cales that marken,
$$R_E \ll R_B + G_{rr}$$
]
 \therefore mut of i_R flow thru R_E :
 $C_R + h_{rr}$ \therefore $N_e \approx i_R R_E$
 $Class
 $i_R = \frac{N_e}{r_R + R_B} = -\frac{i_R R_E}{r_R + R_B}$
 \therefore $N_{be} = \frac{i_V G_R R_E}{r_R + R_B}$
 \therefore $N_{be} = \frac{i_V G_R R_E}{r_R + R_B}$
 \Rightarrow $N_X: i_R (1 + \frac{g_m R_E}{r_R + R_B}) r_0 + i_R R_E$
 \therefore $R_E: \frac{N_X}{i_R}: r_0 (1 + \frac{g_m R_E}{1 + (R_B/r_B)}) + R_E$
 \therefore $R_E = r_0 (1 + \frac{g_m R_E}{1 + (R_B/r_R)}) \approx r_0 (1 + g_m R_E)$
 $(f_R r_R \Rightarrow R_B]$ $(f_R r_R \Rightarrow R_B)$
 $(f_R r_R \Rightarrow R_E + R_E)$
 $R_E = n_{M_B}$$

Copyright © 2018 Regents of the University of California

CTN 10/29/18