CTN 11/5/18

$$R_{o} = R_{E2} \left| \left(\frac{r_{p24} R_{e1}}{R_{r1}} \right) \right|$$

$$G_{c} = \frac{Q_{en}}{V_{b}} = \frac{R_{e}}{N_{c}} = \frac{Q_{en}}{R_{r} + R_{r}} = \frac{R_{B2} \left((q_{r1} + (\beta_{r} + 1) R_{F1}) - (\gamma_{e1} + \beta_{e2}) - (\gamma_{e2} + \beta_{e2}) - (\gamma_{e1} + \beta_{e2}) - (\gamma_{e2} + \beta_{$$

Copyright © 2018 Regents of the University of California

CTN 11/5/18

Procedure for Midband Gain Inspection Analysis:

- Identify and label all signal path nodes
- Get stage gain from node to node
 - For each stage, be sure to account for loading by the next stage, specifically load resistance to ground
 - For transistor terminal-to-terminal gains, will likely need to determine output node resistance to ground
 - including loading by the next stage, and
 even the influence of loading by the
 - previous stage, e.g., when determining R_c
- Take the product of all node-to-node gains to get the total gain
- Can do all of this by inspection if
 - $\textcircled{} \label{eq:constraint}$ There is no feedback
 - ♥ You know all the terminal-to-terminal gain equations or can "see" or "derive" them quickly
 - You know all the equations for resistances looking into the transistor terminals (to ground) or can "see" or "derive" them quickly
 - "see" or "derive" quickly can often be done by following the currents

Procedure for High Frequency Inspection Analysis:

- Identify and label all signal path nodes
- Draw in the small transistor capacitors
- Use the Miller transform to turn the base-tocollector or gate-to-drain capacitor into shunt capacitors to ground
- For the base-to-emitter or gate-to-source capacitor you will need to know the equation for driving point resistance, i.e., resistance in parallel
- Get the time constant for each node by
 - Determining the total capacitance $\mathcal{C}_{\text{node}}$ from that node to ground
 - Determining the total resistance R_{node} from that node to ground

- Handle each feedback capacitor separately using knowledge of its driving point R equation (or derive the equation from scratch using the hybrid- π model
- · Add up all the time constants and take the reciprocal to get the $\omega_{\rm H}$

Rs 2

0

WH=

Cende (2)

Copyright © 2018 Regents of the University of California

Copyright © 2018 Regents of the University of California