Lecture 37: CMOS Inverter

- Announcements:
 - First 15 minutes of lecture for HKN course evaluations
 - HW#11 is online and due Tuesday, Dec. 10
 - Lab 6 online and due 5 p.m., Friday, Dec. 13

- Lecture Topics: (over the next few days)
 - MOS Inverter w/ Resistive Load
 - Static CMOS Inverter Behavior
 - V_{OL} and V_{OH}
 - V_{IL} and V_{IH}
 - Dynamic CMOS Inverter Behavior
 - Propagation Delay
 - Capacitance
 - Astable Ring Oscillator
 - CMOS Inverter Propagation Delay

- Last Time:
 - Started digital circuits
 - Now, continue with this...
$V_{OL} = V_{DD} \rightarrow \text{say } V_{OL} = V_{DD}$

$\Delta M_5 \text{ on}$

$\rightarrow \text{in steady-state:}$

For M_5: $V_{GS5} = V_{TH5} = V_{DD} - V_{TH5} > V_{OL}$

$\therefore M_5 \text{ is large}$

$I_D = \mu_n C_OX \frac{(V_D)}{2} (V_{DD} - V_{TH5} - \frac{V_{OL}}{2})V_{OL}$

$V_{OL} = V_{DD} - \mu_n C_OX \frac{(V_D)}{2} (V_{DD} - V_{TH5})V_{OL} + \frac{\mu_n C_OX (V_D)}{2} V_{OL}^2$

$\Rightarrow \text{solve quadratic for } V_{OL}$

$\Rightarrow \alpha \text{ can get a less accurate (but still good) value ...}$

$\Rightarrow \ldots \text{by defining an ON-resistance for the switching device:}$

$V_{OL} = \frac{V_{DD}}{R + R_{ON}} = \frac{V_{DD}}{1 + \frac{R}{R_{ON}}}$

When $V_{OL} = V_{OL}$:

$I = \frac{V_{DD}}{R + R_{ON}} = \text{in digital, any current is too much!}$

Say: $I = 100\mu A \rightarrow \text{okay for } 100 \times 10^3 \text{ siclier } = 100 \mu A$

But for $1 \text{ billion } = 1000 A \rightarrow \text{way too much}$

Thus, need lower power consumption!

$\therefore \text{CMOS.}$
The CMOS Inverter

- Introduce a complimentary device to ideally eliminate
 static power!

1. Case: $V_L < V_{IL}$
 - M_P off, M_N on

Get V_{OH} & V_{OL}:

- $V_{OH} = V_{DD}$
- $V_{OL} = 0$ in steady state

2. Case: $N_P > V_{IH}$
 - V_{PD}
 - R_{PMH}
 - C_L
 - $N_O = 0V$
 - NMOS discharges C_L

Determination of the Voltage Transfer Characteristic (VTC)

- V_N: V_{DD}
- V_{OH}
- V_{OL}

V_{OH}
- V_{DD}
- V_{PD}

V_{OL}
- V_{IL}
- V_{IH}
- V_{OL}

Slope = -1

Slope = -1