MOS Capacitor in Depletion

- Now we make $V_{GB} > V_{FB}$. Note that thermal equilibrium falls into this range of applied bias.

- Surface potential at oxide/silicon interface is now positive \rightarrow n-type (slightly, $n_s = 10^{13} \text{ cm}^{-3}$).

The Threshold Voltage V_{Tn}

- Keep increasing $V_{GB} \rightarrow$ surface potential keeps increasing. At some point, the surface is n-type (i.e., we say that it is inverted).

- The gate-bulk potential at the onset of inversion is called the threshold voltage, V_{Tn}. To find the threshold voltage, we need to consider the electrostatics in depletion (no electrons at the surface at the onset of inversion) \rightarrow with the surface potential equal to the opposite of the bulk potential:

$$\Phi_{x, max} = -\Phi_p$$
Threshold Voltage Expression

- We can solve for the threshold voltage:

\[
V_T - V_{FB} = V_{ox}' + V_{B, max}
\]

- The drop across the depletion region is

\[
V_{B, max} = \phi_s, max - \phi_p = -\phi_p - \phi_p = -2\phi_p
\]

- The drop across the oxide for \(V_{GB} = V_{Th} \) is

\[
V_{ox}' = E_{ox}' = \left(\frac{-Q_{B, max}}{E_{ox}} \right)_{ox} = -\frac{Q_{B, max}}{C_{ox}}
\]

- Substituting for the bulk charge (found from the potential drop across the depletion region, we find

\[
V_{Th} = V_{FB} - 2\phi_p + \frac{1}{C_{ox}} \frac{2q\varepsilon_s N_a}{-2\phi_p}
\]

The Inverted MOS Capacitor (\(V_{GB} > V_{Th} \))

- We consider the surface potential as fixed ("pinned") at \(\phi_{s, max} = -2\phi_p \)

\[
\phi_{s, max} = -2\phi_p
\]

- Inversion charge \(Q_N \) at SiO\(_2\) - silicon surface balances extra + charge on gate as \(V_{GB} \) increases

\[
Q_N = -C_{ox}(V_{GB} - V_{Th})
\]
Charge Storage in the MOS Structure

- Three regions of operation:
 - **Accumulation:** \(q_G = C_{ox} (v_{GB} - v_{FB}) \) ... parallel plate capacitor
 - **Depletion:** \(q_G = -q_B(v_{GB}) \), with the bulk (depletion) charge in the silicon being a nonlinear function of \(v_{GB} \)
 - **Inversion:** \(q_G = -q_N - q_{B,max} \), where \(q_{B,max} = q_B(v_{GB} = V_T) \) is the depletion charge at the onset of inversion and
- Sketch of the gate charge as a function of gate-bulk voltage:

![Gate Charge vs. Gate-Bulk Voltage](image)

MOS Capacitance

- The capacitance of the MOS structure is defined as
 \[
 C = \frac{dq_G}{dv_{GB}}|_{V_{GB}}
 \]
- From sketch, determine the slope and plot as the capacitance:

![MOS Capacitance](image)
Physical Interpretation of MOS Capacitance

- **Accumulation**: parallel plate capacitor \(\rightarrow C = C_{ox} \)

- **Depletion**: increment in gate charge is mirrored at bottom of depletion region, so capacitance model is \(C_{ox} \) in series with the depletion region capacitance \(C_b \)

\[
C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}
\]

\[
C_b = \frac{\varepsilon_s}{X_d}
\]

Note that \(X_d \) is a function of \(V_{GB} \)

\[
C = C_{ox} \parallel C_b
\]

- **Inversion**: bulk charge is no longer changing with \(V_{GB} \) \(\rightarrow \) an increment in gate charge is “mirrored” in the inversion layer under the gate.

The capacitance is therefore the same as in accumulation \(\rightarrow C = C_{ox} \)

MOS Field Effect Transistors
MOSFET Circuit Symbols

Two complementary devices (each with two symbols): both are very useful

p-substrate (n-type channel under gate oxide)
n-substrate (p-type channel under gate oxide)

Four electrical terminals: source (lowest potential for n-channel, highest for p-channel), drain, gate, and bulk.

Basic concept: inversion layer (called the channel) formed under gate between source and drain enables drift current