Week 2, Lectures 3-5, February 22-26, 2001

EECS 105 Microelectronics Devices and Circuits, Spring 2001

Andrew R. Neureuther

Topics: Practice Loop and Node Eqns., Two-Ports, Silicon Physics – Carriers, Process Flow and Layout, Sheet Resistance, Squares

Reading for week: (review of EE 40), HS 8.2.2, 9.1, 2.1-2.4, 2.5.4-2.6, 4.1.1, 4.5.7, 6.2, 7.1.1, 7.7,
Outline: Week 2 Lectures 3-5

L3: More Basic Circuits (HS 8.2.2, 9.1)
 Loop and Node Equations, Two-Ports
L4: Silicon Physics (HS 2.1-2.4, 2.5.4, 4.1.1, 5.4.7, 6.2, 7.1.1, 7.1)
 Carriers, Process Flow and Layout
L5: IC Resistors (HS 2.6)
 Sheet resistance and Number of Squares
Lecture 3, February 22, 2001

EECS 105 Microelectronics Devices and Circuits, Spring 2001
Andrew R. Neureuther

Topics:
Practice Circuit Analysis,
Two-Ports

Reading: (review of EE 40), HS 8.2.2, 9.1
W2 M L3 : More Basic Circuits

- Practice circuit analysis
 - \(R_{IN} \) with \(R_E \)
 - Gain or Rout with \(R_E \)
- Standard Two-ports
- Difficulty of two-ports with output coupled back to input
High Input Impedance Circuit

\[R_E = 30 \text{k}\Omega \quad R_{IN\,EQ} = R_{IN} + (\beta + 1)R_E = 3.06 \text{M}\Omega \]

23.5 times less current

\[\Delta V'_{S} \]

\[V_{OUT} = \left[\frac{\Delta V'_{S}}{(R_S + R_{SA} + R_{IN\,EQ})} \right](-\beta)R_{LOAD} = 5 \text{mV} \]

\[\Sigma V_i = 0 \Rightarrow i_{IN} \]

23.5 times smaller gain

Note ground connections

Analog Integrated Circuits

Overview and Circuit Value Added
High Input Impedance Circuit

\[V_{\text{OUT}} = \frac{\Delta V_S'}{(R_S + R_{SA} + R_{\text{IN EQ}})}(\beta)R_{\text{LOAD}} \]

Result:

How is the circuit analysis done?
Write a Node Equation for I_E

\[\Delta V_S + \Delta Q = I_E R_S \]

Node

\[I_E = \beta i_{IN} \]

\[R_{OUT} = \text{infinite} \]
Write a Loop Equation for I_{IN}

$$\Delta V_S$$

ΔQ

Loop

$$R_{OUT} = \text{infinite}$$
Find $V_{OUT}/ \Delta V'_S$

$$V_{OUT}/ \Delta V'_S = \left[\frac{1}{R_S + R_{SA} + R_{IN_{EQ}}}\right](-\beta)R_{LOAD}$$
Analysis of Multistages

Node

Node

Loop
Background on Two-Ports

- Designed for cascading components
 - Hi-Fi components
 - IC stages of amplifier circuit
- Based on Matrix Multiplication

\[
\begin{align*}
V_1 &= Z_{11}I_1 + Z_{12}I_2 \\
V_2 &= Z_{21}I_1 + Z_{22}I_2 \\
I_1 &= Y_{11}V_1 + Y_{12}V_2 \\
I_2 &= Y_{21}V_1 + Y_{22}V_2 \\
V_1 &= H_{11}I_1 + H_{12}V_2 \\
I_2 &= H_{21}I_1 + H_{22}V_2
\end{align*}
\]

Impedance (transresistance) Admittance (transconductance) Hybrid_1 (current 1-2)
Two-Port Equivalent Circuits

\[V_1 = Z_{11}I_1 + Z_{12}I_2 \]
\[V_2 = Z_{21}I_1 + Z_{22}I_2 \]

Two Thevenin
(transresistance)

\[I_1 = Y_{11}V_1 + Y_{12}V_2 \]
\[I_2 = Y_{21}V_1 + Y_{22}V_2 \]

Two Norton
(transconductance)

\[V_1 = H_{11}I_1 + H_{12}V_2 \]
\[I_2 = H_{21}I_1 + H_{22}V_2 \]
Finding the Two-Port Parameters

\[V_1 = H_{11} I_1 + H_{12} V_2 \]
\[I_2 = H_{21} I_1 + H_{22} V_2 \]

\(H_{11} \) is found by taking \(V_1 \) over \(I_1 \) when \(V_2 \) is zero.

\(H_{12} \) is found by taking \(V_1 \) over \(V_2 \) when \(I_1 \) is zero.

Note: The conditions to determine each matrix element arise from the terminal variables multiplying the right hand side.
Hybrid Two-Port for a Resistor

\[V_1 = H_{11} I_1 + H_{12} V_2 \]

\[I_2 = H_{21} I_1 + H_{22} V_2 \]

\[V_2 = 0: \]

\[V_1 = H_{11} I_1 = R_{SA} I_1 \]

\[H_{11} = R_{SA} \]

\[I_2 = H_{21} I_1 = -I_1 \]

\[H_{21} = -1 \]

\[V_1 = H_{12} V_2 = +1 V_2 \]

\[H_{12} = +1 \]

\[I_2 = H_{22} V_2 = 0 V_2 \]

\[H_{22} = 0 \]

Analog Integrated Circuits

Overview and Circuit Value Added
Find H_{11} with R_E and R_{OUT}

\[V_1 = H_{11} I_1 + H_{12} V_2 \]
\[I_2 = H_{21} I_1 + H_{22} V_2 \]

\[V_X = (\beta + 1) \frac{i_{IN}}{1/R_S + 1/R_{OUT}} \]
\[V_{IN} = i_{IN} R_{IN} + V_X \]
\[V_2 = 0: \]
\[R_{OUT} \text{ in } || \text{ with } R_E \]

Node Eq. For V_X

\[i_{IN} - \frac{V_X}{R_S} - \frac{V_X}{R_{OUT}} + \beta i_{IN} = 0 \]

Note: R_{IN} depends on R_{OUT} when the output feeds back to the input.
Find H_{12} with R_E and R_{OUT}

Voltage V_2 is divided across R_{OUT} and R_E

$I_1 = 0$:

$i_{IN} = 0$

$V_1 = V_x$

$V_1 = H_{11}I_1 + H_{12}V_2$

$I_2 = H_{21}I_1 + H_{22}V_2$

b_{IN}

Note: The voltage source in the input port is not zero when R_E is not zero.
Multistage Amplifiers

This example from the reading in Chapter 8 this week.
Classification of Two-Port Amplifiers

Voltage Amplifier

Current Amplifier

Transconductance Amplifier

Transresistance Amplifier

Figure 8.2

Analog Integrated Circuits Overview and Circuit Value Added