University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences

EE 105 Midterm II

Fall 2001

Prof. Roger T. Howe

November 14, 2001

Your Name (Last, First)

Guidelines

Closed book and notes; one 8.5" x 11" page (both sides) of *your own notes* is allowed. You may use a calculator.

Do not unstaple the exam.

Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	16	
2	24	
3	10	
Total	50	

1. Short-Channel MOSFET Model [17 points].

An improved model for the velocity-saturated MOSFET is:

$$i_{D} = C_{ox}Wv_{sat}(v_{GS} - V_{Tn})\left(\frac{v_{DS}}{V_{DS,sat}}\right)\left(1 - \frac{v_{DS}}{2V_{DS,sat}}\right) \text{ when } v_{DS} \le V_{DS,sat} = 0.75 \text{ V (triode region)}$$
$$i_{D} = \left(\frac{1}{2}\right)C_{ox}Wv_{sat}(v_{GS} - V_{Tn})\left[\frac{1 + \lambda_{n}v_{DS}}{1 + \lambda_{n}V_{DS,sat}}\right] \text{ when } v_{DS} > V_{DS,sat} = 0.75 \text{ V (saturation region)}$$

The drain characteristics for this short-channel MOSFET model are:

(a) [4 pts.] What is the small-signal transconductance g_m at the operating point Q_1 in mS? You can find the answer either from the drain current equations or graphically: in either case, be sure to explain your method clearly.

(b) [4 pts] What is the small-signal drain resistance r_o at the operating point Q_1 in $k\Omega$? For this parameter at this operating point, graphical techniques don't give a sufficiently accurate answer.

(c) [4 pts.] What is the transconductance g_m at the operating point Q_2 in mS? You can find the answer either from the drain current equations or graphically: in either case, be sure to explain your method clearly.

(d) [4 pts] What is the small-signal drain resistance r_o at the operating point Q_2 in $k\Omega$? You can find the answer either from the drain current equations or graphically: in either case, be sure to explain your method clearly.

2. BJT voltage buffer [18 pts.]

(a) [3 pts.] Find the numerical value of V_B such that $V_{OUT} = 2.5$ V. Your answer should be accurate to +/- 5%. Notes: (i) the gray boxes indicate small-signal elements that can be neglected for the DC bias analysis and (ii) the DC base current I_B of the bipolar transistor can be neglected for the bias solution.

(b) [3 pts.] What is the numerical value of the DC collector current I_C for this amplifier?

(c) [4 pts.] Find the numerical value of the input resistance R_{in} of this amplifier in k Ω .

(d) [4 pts.] Find the numerical value of the output resistance R_{out} in k Ω .

(e) [3 pts.] Find the numerical value two-port parameter A_{ν} , the open-circuit voltage gain, for this amplifier.

(f) [4 pts.] Find the overall voltage gain v_{out} / v_s with R_s and R_L present (values of which are given next to the schematic on the previous page). If you couldn't solve (a), (b), or (c), you can assume that $R_{in} = 7 \text{ k}\Omega$, $R_{out} = 5 \text{ k}\Omega$, and $A_v = 0.8$. Needless to say, these are not correct answers to (a), (b), or (c).

(g) [3 pts.] Suppose that the input voltage $v_s(t) = \hat{v}_s \cos(\omega t)$. What is the maximum amplitude \hat{v}_s for which the small-signal, two-port model you've derived in parts (b)-(c) is reasonably accurate? You can assume that the frequency of $v_s(t)$ is low enough that capacitors can be neglected. Justify your answer.

3. npn bipolar transistor device physics [10 pts.]

(a) [4 pts.] The collector current for this forward-active npn bipolar transistor is $I_C = 20 \ \mu$ A. From the cross section of the device shown above, find the numerical value of the minority electron concentration at x = 0, at the base side of the emitter-base depletion region.

(b) [3 pts.] For the bias conditions in part (a), the base-emitter voltage $V_{BE} = 692.5 \text{ mV}$. What is the doping concentration N_A in the base? If you couldn't solve part (a), you can use $n_{pB}(0) = 8 \times 10^{14} \text{ cm}^{-3}$, which is not the correct answer to part (a), of course.

(c) [3 pts.] The minority hole concentration in the emitter at the edge of the emitterbase depletion region is $(0.05)^*$ (your answer to part (a)). What is the forwardactive DC current gain β_F for this transistor? Note that you don't need to have answered part (a) in order to answer this part!