University of California at Berkeley
 College of Engineering Dept. of Electrical Engineering and Computer Sciences
 EE 105 Midterm II

Your Name (Last, First)

Guidelines

Closed book and notes; one $8.5 " \times 11 "$ page (both sides) of your own notes is allowed.
You may use a calculator.
Do not unstaple the exam.
Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	16	
2	24	
3	10	
Total	50	

1. Short-Channel MOSFET Model [17 points].

Device parameters:

$$
\begin{aligned}
& C_{o x}=4 \mathrm{fF} / \mu \mathrm{m}^{2} \\
& W=5 \mu \mathrm{~m} \\
& L=0.1 \mu \mathrm{~m} \\
& V_{T n}=1 \mathrm{~V} \\
& V_{D S, s a t}=0.75 \mathrm{~V} \\
& \lambda_{n}=0.05 \mathrm{~V}^{-1} \\
& v_{\text {sat }}=10^{7} \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

An improved model for the velocity-saturated MOSFET is:
$i_{D}=C_{o x} W v_{s a t}\left(v_{G S}-V_{T n}\right)\left(\frac{v_{D S}}{V_{D S, s a t}}\right)\left(1-\frac{v_{D S}}{2 V_{D S, s a t}}\right)$ when $v_{D S} \leq V_{D S, s a t}=0.75 \mathrm{~V}$ (triode region)
$i_{D}=\left(\frac{1}{2}\right) C_{o x} W v_{s a t}\left(v_{G S}-V_{T n}\right)\left[\frac{1+\lambda_{n} v_{D S}}{1+\lambda_{n} V_{D S, s a t}}\right]$ when $v_{D S}>V_{D S, s a t}=0.75 \mathrm{~V}$ (saturation region)

The drain characteristics for this short-channel MOSFET model are:

(a) [4 pts.] What is the small-signal transconductance g_{m} at the operating point Q_{1} in mS ? You can find the answer either from the drain current equations or graphically: in either case, be sure to explain your method clearly.
(b) [4 pts] What is the small-signal drain resistance r_{o} at the operating point Q_{1} in $\mathrm{k} \Omega$? For this parameter at this operating point, graphical techniques don't give a sufficiently accurate answer.
(c) [4 pts.] What is the transconductance g_{m} at the operating point Q_{2} in mS ? You can find the answer either from the drain current equations or graphically: in either case, be sure to explain your method clearly.
(d) [4 pts] What is the small-signal drain resistance r_{o} at the operating point Q_{2} in $\mathrm{k} \Omega$? You can find the answer either from the drain current equations or graphically: in either case, be sure to explain your method clearly.
2. BJT voltage buffer [18 pts.]

Given:
$\beta_{0}=100$
$V_{t h}=25 \mathrm{mV}$
$V_{A}=50 \mathrm{~V}$
$R_{S}=5 \mathrm{k} \Omega$
$R_{E}=5 \mathrm{k} \Omega$
$R_{L}=2.5 \mathrm{k} \Omega$
(a) [3 pts.] Find the numerical value of V_{B} such that $V_{\text {OUT }}=2.5 \mathrm{~V}$. Your answer should be accurate to $+/-5 \%$. Notes: (i) the gray boxes indicate small-signal elements that can be neglected for the DC bias analysis and (ii) the DC base current I_{B} of the bipolar transistor can be neglected for the bias solution.
(b) [3 pts.] What is the numerical value of the DC collector current I_{C} for this amplifier?
(c) [4 pts.] Find the numerical value of the input resistance $R_{\text {in }}$ of this amplifier in $\mathrm{k} \Omega$.
(d) [4 pts.] Find the numerical value of the output resistance $R_{\text {out }}$ in $\mathrm{k} \Omega$.
(e) $\left[3\right.$ pts.] Find the numerical value two-port parameter A_{v}, the open-circuit voltage gain, for this amplifier.
(f) [4 pts.] Find the overall voltage gain $v_{\text {out }} / v_{s}$ with R_{S} and R_{L} present (values of which are given next to the schematic on the previous page). If you couldn't solve (a), (b), or (c), you can assume that $R_{\text {in }}=7 \mathrm{k} \Omega, R_{\text {out }}=5 \mathrm{k} \Omega$, and $A_{v}=0.8$. Needless to say, these are not correct answers to (a), (b), or (c).
(g) [3 pts.] Suppose that the input voltage $v_{s}(t)=\hat{v}_{s} \cos (\omega t)$. What is the maximum amplitude \hat{v}_{s} for which the small-signal, two-port model you've derived in parts (b)-(c) is reasonably accurate? You can assume that the frequency of $v_{s}(t)$ is low enough that capacitors can be neglected. Justify your answer.
3. npn bipolar transistor device physics [10 pts.]

Given:
Base width $=W_{B}=100 \mathrm{~nm}=0.1 \mu \mathrm{~m}$
Emitter-base junction area $=A_{E}=25 \mu \mathrm{~m}^{2}$
Emitter width $=W_{E}=70 \mathrm{~nm}=0.07 \mu \mathrm{~m}$
Base-collector junction area $=A_{C}=50 \mu \mathrm{~m}^{2}$
Electron diffusion constant in base: $D_{n}=20 \mathrm{~cm}^{2} / \mathrm{s}$
Hole diffusion constant in emitter: $D_{p}=5 \mathrm{~cm}^{2} / \mathrm{s}$
Electron charge: $q=-1.6 \times 10^{-19} \mathrm{C}$
Intrinsic concentration: $n_{i}=10^{10} \mathrm{~cm}^{-3}$
(a) [4 pts.] The collector current for this forward-active npn bipolar transistor is $I_{C}=20 \mu \mathrm{~A}$. From the cross section of the device shown above, find the numerical value of the minority electron concentration at $x=0$, at the base side of the emitter-base depletion region.
(b) [3 pts.] For the bias conditions in part (a), the base-emitter voltage $V_{B E}=692.5 \mathrm{mV}$. What is the doping concentration N_{A} in the base? If you couldn't solve part (a), you can use $n_{p B}(0)=8 \times 10^{14} \mathrm{~cm}^{-3}$, which is not the correct answer to part (a), of course.
(c) [3 pts.] The minority hole concentration in the emitter at the edge of the emitterbase depletion region is $(0.05) *$ (your answer to part (a)). What is the forwardactive DC current gain β_{F} for this transistor? Note that you don't need to have answered part (a) in order to answer this part!

