Course Overview

• EE 105 – new version

- Prerequisite: EECS 40
- *analog* integrated circuits + basic IC device models needed to design them
- course incorporates a laboratory
- Related courses :

- EE 130, 140, 141, 142

Sinusoidal Function Review

Graphical Description

Why are Sinusoids Important?

- Any periodic signal v(t) can be expressed as a sum of sinusoidal signals by a Fourier series expansion (EECS 20N, EE 120)
- The response of a linear circuit to a sinusoidal input, as a function of its frequency ω, leads to insights into the behavior of the circuit.

Linear Circuits

Theorem: solutions for voltages and currents in a linear circuit (i.e., one consisting of *R*, *L*, *C* and dependent sources *G_m*, *R_m*, *A_v*, and *A_i*) with a *sinusoidal* signal as the input are:

RC Circuit with Sinusoidal Input

 $v_s(t) = V_s \cos(\omega t)$: set phase of source to zero (use as the reference)

 $v_c(t) = V_c \cos(\omega t + \phi)$: solution is a sinusoidal signal with the same frequency, but with a different amplitude and phase-shifted with respect to the source

Circuit Analysis

Circuit Analysis (Continued)

Graphical Result for Phase ϕ

Graphical Result for Amplitude Ratio

