Lecture 10

- Last time:
- IC resistors (finish)
- IC capacitors (metal-metal + start pn junction)
- Today :
- pn junction: reverse bias
$-Q-V$ plots \rightarrow linearization to get C_{j}

Voltages in Thermal Equilibrium

KVL: where are the missing voltage drops?

Reverse Applied Bias ($V_{D}<0 \mathrm{~V}$)

- Polarity increases charge stored in junction \rightarrow increases barrier between p and n regions
- Current is negligible (due to high barrier)

Qualitative Charge-Voltage Plot

Why isn't the plot linear?

Quantitative Charge-Voltage Plot

Approximations are needed ... see EE 130

Lengthy derivation in HS 3.4-3.5 (not assigned)
Result: $\quad Q_{J}=Q_{J o} \sqrt{1-V_{D} / \phi_{B}}$

Built-in voltage ϕ_{B}

Charge Storage in pn Junction

- Circuit element:

- Can't handle non-linearity in KCL, KVL

Linearizing the Charge Storage

- Symbol conventions

$$
q_{J}=Q_{J}+q_{j}
$$

Diode Voltage $v_{D}(t)$

Incremental Charge q_{j}

