Lecture 10

- Last time:
 - IC resistors (finish)
 - IC capacitors (metal-metal + start pn junction)
- Today:
 - pn junction: reverse bias
 - -Q-V plots \rightarrow linearization to get C_j

Voltages in Thermal Equilibrium

KVL: where are the missing voltage drops?

Reverse Applied Bias $(V_D < 0 \text{ V})$

- Polarity increases charge stored in junction
 - → increases barrier between p and n regions

• Current is negligible (due to high barrier)

Qualitative Charge-Voltage Plot

Why isn't the plot linear?

Quantitative Charge-Voltage Plot

Approximations are needed ... see EE 130

Lengthy derivation in HS 3.4-3.5 (not assigned)

Result:
$$Q_J = Q_{Jo} \sqrt{1 - V_D / \phi_B}$$

Built-in voltage ϕ_B

Charge Storage in pn Junction

• Circuit element:

• Can't handle non-linearity in KCL, KVL

Linearizing the Charge Storage

Symbol conventions

Diode Voltage $v_D(t)$

Incremental Charge q_j

