Lecture 18

• Last time:

– pn junctions under *forward* bias ($V_D = 0.7 \text{ V}$)

- Today :
 - DC and small-signal model of the forwardbiased diode

pn Junctions in ICs

Large-Signal Model

Small-Signal Model: r_d

Forward-bias assumed $\rightarrow V_D = 0.7 \text{ V} \text{ (approx)}$

$$i_D(t) = I_O(e^{v_D(t)/V_{th}} - 1) \cong I_O e^{v_D(t)/V_{th}}$$

Substitute $v_D(t) = V_D + v_d(t)$:

Power Series Expansion $e^{x} = 1 + x + \frac{1}{2}x^{2} + \frac{1}{3!}x^{3} + \dots$

Can quantify the limit of the linear approximation

Graphical Interpretation

Diffusion Capacitance

Depletion region narrows under forward bias, increasing capacitance to $C_j = 1.4 C_{jo}$

Dominant capacitance is from storage of minority carriers in the diode's p and n regions: the *diffusion* capacitance

Physics of Diffusion Capacitance

Diffusion Capacitance

Minority carrier charge storage is proportional to the DC diode current:

$$C_d = \left(\frac{I_D}{V_{th}}\right)\tau_T = g_d \tau_T$$

where τ_T is the diode's *transit time*