Lecture 2

- Last time:
- Course overview
- Sinusoidal signals
- $R C$ circuit with sinusoidal input voltage
- Today:
- Finish $R C$ circuit: introduce deciBel (dB)
- Introduce phasor representation of sinusoids

Amplitude: a new representation

- We are interested in very small ratios (e.g., $V_{c} / V_{s}=0.0001$)
- Therefore, we use a log plot ... but we also define a new function called the deciBel (after Alex. Graham Bell)

$$
\left(V_{c} / V_{s}\right)_{\mathrm{dB}}=20 \log _{10}\left(V_{c} / V_{s}\right)
$$

- Examples: $\quad V_{c} / V_{s}=0.0001 \rightarrow\left(V_{c} / V_{s}\right)_{\mathrm{dB}}=-80 \mathrm{~dB}$

$$
V_{c} / V_{s}=0.707 \rightarrow\left(V_{c} / V_{s}\right)_{\mathrm{dB}}=-3 \mathrm{~dB}
$$

A Better Technique

- It is much more efficient to work with imaginary exponentials as "representing" sinusoids, since these functions are direct solutions of linear differential equations:

$$
\frac{d}{d t}\left(e^{j \omega t}\right)=j \omega\left(e^{j \omega t}\right)
$$

- Note that EEs use $j=(-1)^{1 / 2}$ rather than i, since the symbol i is already taken for current

Using Imaginary Exponentials

From the example in Lecture 1:

$$
R C \frac{d v_{c}}{d t}+v_{c}=v_{s}
$$

Substitute:

$$
\begin{gathered}
v_{S}(t)=v_{s} e^{j \omega t} \\
v_{c}(t)=v_{c} e^{j(\omega t+\phi)}
\end{gathered}
$$

Result:

$$
\tau(j \omega) v_{c} e^{j(\omega t+\phi)}+v_{c} e^{j(\omega t+\phi)}=v_{s} e^{j \omega t}
$$

Finding the Amplitude Ratio

$\left[\tau(j \omega) v_{c} e^{j \phi}+v_{c} e^{j \phi}\right] e^{j \omega t}=v_{s} e^{j \omega t}$
$\left[j \omega \tau e^{j \phi}+e^{j \phi}\right] v_{c}=v_{S} \quad \ldots$ use to find amplitude and phase
$\underset{\text { Ratio: }}{\text { Amplitude }} \quad \frac{v_{c}}{v_{s}}=\frac{1}{j \omega \tau e^{j \phi}+e^{j \phi}}=\frac{e^{-j \phi}}{(1+j \omega \tau)}$
Answer is a real number, so take magnitude

$$
\frac{v_{c}}{v_{S}}=\frac{1}{\sqrt{1+(\omega \tau)^{2}}}
$$

Finding the Phase

$$
\left[j \omega \tau e^{j \phi}+e^{j \phi}\right]=v_{S} / v_{c} \quad \text { (a real number) }
$$

Use Euler's formula to convert to rectangular form:
$j \omega \tau(\cos \phi+j \sin \phi)+(\cos \phi+j \sin \phi)=v_{s} / v_{c}$
Collect real and imaginary parts; latter must be zero:

$$
\operatorname{Im}(\cdot)=\omega \tau \cos \phi+\sin \phi=0
$$

$\tan \phi=-\omega \tau$

Finding the "Real" Waveform

- How to connect the imaginary exponential solution to the measured waveform $v(t)$? Conventionally, $v(t)$ is the real part of the of the imaginary exponential

$$
\operatorname{Re}\left(v e^{j(\omega t+\phi)}\right)=v \cos (\omega t+\phi)
$$

Pushing This Idea Further ...

There are two parameters needed to define a sinusoidal signal:

* magnitude
* phase

Why not work with a complex number as the signal and eliminate the imaginary exponential from the analysis (it cancelled out)?

Define the complex number consisting of the amplitude and phase a sinusoidal signal as a phasor

$$
\begin{gathered}
v(t)=v \cos (\omega t+\phi) \Leftrightarrow v(t)=V e^{j \omega t} \\
V=v e^{j \phi}
\end{gathered}
$$

