Lecture 21

- Last time:
 - Large-signal model under forward bias
 - Ebers-Moll model, start small signal model
- Today :

- Small-signal model of the npn bipolar transistor

Transconductance (cont.)

• Forward-active large-signal current:

$$i_C = I_S e^{v_{BE} / V_{th}} (1 + v_{CE} / V_A)$$

• Differentiating and evaluating at $Q = (V_{BE}, V_{CE})$

Comparison with MOSFET g_m

- Bipolar transistor:
- MOSFET:
- Typical bias point: drain/coll. current = 100 μ A; Select (*W/L*) = 8/1, $\mu_n C_{ox}$ = 100 μ A/V²

What about the Base Current?

Unlike MOSFET, there is a DC current into the base terminal of a bipolar transistor:

$$I_{B} = I_{C} / \beta_{F} = (I_{S} / \beta_{F}) e^{V_{BE} / V_{th}} (1 + V_{CE} / V_{th})$$

To find the change in base current due to change in base-emitter voltage:

$$\frac{\partial i_B}{\partial v_{BE}}\Big|_{Q} = \frac{\partial i_B}{\partial i_C}\Big|_{Q} \frac{\partial i_C}{\partial v_{BE}}\Big|_{Q} =$$

Small-Signal Current Gain β_0

Input Resistance r_{π}

$$(r_{\pi})^{-1} = \frac{\partial i_B}{\partial v_{BE}}\Big|_Q$$

In practice, the DC current gain β_F and the small-signal current gain β_o are both highly variable (+/- 25%)

Typical bias point: DC collector current = $100 \mu A$

Output Resistance r_o

Why does current increase slightly with increasing v_{CE} ?

Model: math is a mess, so introduce the Early voltage

$$i_C = I_S e^{v_{BE}/V_{th}} (1 + v_{CE}/V_A)$$

Graphical Interpretation of r_o

BJT Small-Signal Model

BJT Capacitances

Base-charging capacitance C_b : due to minority carrier charge storage (mostly electrons in the base)

$$C_b = g_m \tau_F$$

Base-emitter depletion capacitance: $C_{jE} = 1.4 C_{jEo}$

Total B-E capacitance:
$$C_{\pi} = C_{jE} + C_b$$

Complete Small-Signal Model

