Lecture 24

- Last time:
 - Small-signal model for the entire commonsource amplifier
 - Limits to model
- Today :

- Two-port small-signal models of amplifiers

Generalized Amplifier

Amplifier Terminology

- *Sources*: signal, its source resistance, and bias voltage or current
- *Load*: use resistor in Chap. 8, but could be a general impedance
- *Port:* a pair of terminals across which a voltage and an associated current are defined

source, load: "one port" amplifier: "two port"

Amplifier Biasing

Select V_{IN} (or I_{IN}) to set the DC device current to equal the supply current I_{SUP} .

DC output current I_{OUT} = DC output voltage V_{OUT} =

Small-signal source voltage or source current results in small-signal device current $i_d \rightarrow$

One-Port Models (EECS 40)

a terminal pair across which a voltage and associated current are defined

University of California at Berkeley

Dept. of EECS

Small-Signal Two-Port Models

We assume that input port is linear and that the amplifier is *unilateral*:

The output port : depends linearly on the current and voltage at the input and output ports

Math 54 Perspective

Can write linear system of equations for either i_{out} or v_{out} in terms of two of i_{in} , v_{in} , i_{out} , or v_{out} : possibilities are

$$i_{out} = \alpha_1 v_{in} + \alpha_2 v_{out}$$
$$i_{out} = \alpha_3 i_{in} + \alpha_4 v_{out}$$
$$v_{out} = \alpha_5 v_{in} + \alpha_6 i_{out}$$
$$v_{out} = \alpha_7 i_{in} + \alpha_8 i_{out}$$

What is physical meaning of α_1 ? of α_6 ?

EE Perspective

Four amplifier types: determined by the output signal and the input signal ... both of which we select (usually obvious)

Voltage Current Transconductance Transresistance

We need *methods* to find the 6 α_i parameters for the four models and equivalent circuits for unilateral two ports EECS 105 Spring 2002 Lecture

Two-Port Small-Signal Amplifiers

Dept. of EECS

Input Resistance R_{in}

Looks like a Thevenin resistance measurement, but note that the output port has the load resistance attached

Output Resistance R_{out}

Looks like a Thevenin resistance measurement, but note that the *input* port has the *source* resistance attached

