Lecture 26

- Last time:
 - Finish methods for finding two-port model parameters
 - Start common-source amplifier
- Today :
 - Current-source supplies
 - Common-gate amplifier

Non-Ideal Current Sources

We want to have both R_D and a very large g_m at the same time ... how to do it?

The gain depends on the small-signal resistance; the DC current can be set by a supply \rightarrow modify load line

Current Source Supply

Common-Source Amplifier with Current Source Supply

R. T. Howe

Load Line for DC Biasing

Both the I-source and the transistor are idealized for DC bias analysis

Two-Port Parameters

 $R_{out} =$

P-Channel CS Amplifier

DC bias: $V_{SG} = V_{DD} - V_{BIAS}$ sets drain current $-I_{Dp} = I_{SUP}$

Two-Port Model Parameters

Small-signal model for PMOS and for rest of circuit

Common Gate Amplifier

Dept. of EECS

CG as a Current Amplifier: Find A_i

$$i_{out} = i_d = -i_g - i_s = -i_t$$

CG Input Resistance

At input:
$$i_t = -g_m v_{gs} + g_{mb} v_t + \left(\frac{v_t - v_{out}}{r_o}\right)$$

Output voltage: $-i_{out} (r_{oc} || R_L) = - (-i_t)(r_{oc} || R_L)$

EECS 105 Spring 2002 Lecture 26

* Kirchhoff's current law at the source resistor node: sum currents leaving node

$$\frac{\mathbf{v}_s}{\mathbf{R}_S} - \mathbf{g}_m \mathbf{v}_{gs} - (-\mathbf{g}_{mb} \mathbf{v}_s) + \frac{\mathbf{v}_s - \mathbf{v}_t}{\mathbf{r}_o} = 0$$
$$\mathbf{v}_s \left(\frac{1}{\mathbf{R}_S} + \mathbf{g}_m + \mathbf{g}_{mb} + \frac{1}{\mathbf{r}_o}\right) = \frac{\mathbf{v}_t}{\mathbf{r}_o}$$