Lecture 27

- Last time:
 - Current-source supplies
 - Common-gate amplifier
- Today :
 - Finish common-gate
 - Common-drain amplifier

Common-Gate Output Resistance

Substituting
$$v_s = i_t R_s$$

 $i_t R_s \left(\frac{1}{R_s} + g_m + g_{mb} + \frac{1}{r_o} \right) = \frac{v_t}{r_o}$

The output resistance is $(v_t / i_t) || r_{oc}$

$$R_{out} = r_{oc} \left| \left| \left(R_{S} [r_{o} / R_{S} + g_{m} r_{o} + g_{mb} r_{o} + 1] \right) \right. \right|$$

Approximating the CG R_{out}

$$R_{out} = r_{oc} || [r_o + g_m r_o R_S + g_{mb} r_o R_S + R_S]$$

The exact result is complicated, so let's try to make it simpler:

$$g_m \approx 500\mu S \quad g_{mb} \approx 50\mu S \quad r_o \approx 200k\Omega$$
$$R_{out} \cong r_{oc} \parallel [r_o + g_m r_o R_S + R_S]$$

Assuming the source resistance is less than r_o ,

$$R_{out} \approx r_{oc} || [r_o + g_m r_o R_S] = r_{oc} || [r_o (1 + g_m R_S)]$$

Common-Gate Two-Port Model

Function: a current buffer

Dept. of EECS

Common-Drain Amplifier

Backgate terminal

Note $v_{gs} = v_t - v_{out}$

University of California at Berkeley

CD Voltage Gain (Cont.)

KCL at source node:

Voltage gain (for v_{SB} not zero):

CD Output Resistance

Sum currents at output (source) node:

CD Output Resistance (Cont.)

 $r_o \parallel r_{oc}$ is much larger than the inverses of the transconductances \rightarrow ignore

 $R_{out} =$

EECS 105 S

Dept. of l