Lecture 29

- Last time:
 - Bipolar single-stage ampliers: biasing, common-emitter, common-base, commoncollector
- Today :
 - Overview of single-stage amplifiers
 - Frequency response of CS stage operated as a current amplifier

Common-Collector Summary

- Typo in Fig. 8.47 in text ... R_{in} can't depend upon $R_S!$
- Input and output resistances depend on load and source resistances, respectively
- See Appendix to Chapter 8 for limits to using this model with very low values of R_L

Summary of Two-Port Parameters for CE/CS, CB/CG, CC/CD Amplifiers

Amplifier Type	Controlled Source	Input Resistance <i>R_{in}</i>	Output Resistance <i>R_{out}</i>
Common Emitter	$G_m = g_m$	r _π	r _o r _{oc}
Common Source	$G_m = g_m$	infinity	r _o r _{oc}
Common Base	<i>A_i</i> = -1	1 / g _m	$ \begin{array}{c} r_{oc} \parallel [(1 + g_m(r_{\pi} \parallel R_S)) \; r_o], \\ & \text{for } g_m r_o >> 1 \end{array} $
Common Gate	<i>A_i</i> = -1	$1 / g_m, (v_{sb} = 0)$ -otherwise- $1 / (g_m + g_{mb})$	$\begin{array}{c} r_{\rm oc} \parallel [(1 + g_m R_S) r_o], (v_{sb} = 0) \\ & - {\rm otherwise} - \\ r_{\rm oc} \parallel [(1 + (g_m + g_{mb}) R_S) r_o] \\ & {\rm both \ for \ } r_o >> R_S \end{array}$
Common Collector	$A_{\nu} = 1$	$r_{\pi} + \beta_{o}(r_{o} \parallel r_{oc} \parallel R_{L})$	$(1 / g_m) + R_S / \beta_o$
Common Drain	$A_{\nu} = 1 \text{ if } \nu_{sb} = 0,$ -otherwise- $g_m / (g_m + g_{mb})$	infinity	$\begin{array}{l} 1 \ / \ g_m \ \text{if} \ \nu_{sb} = 0, \\ -\text{otherwise}- \\ 1 \ / \ (g_m + g_{mb}) \end{array}$

EECS 105 Spring 2002 Lecture 29

The "Chapter 8" Method for Single-Stage Amplifier Analysis

- 1. What is it?
- 2. DC Bias
- 3. Small-signal 2-port
 - model
- 4. Output swing

Two-Port Model for CE_{deg}

- Input looks like CC $\rightarrow R_{in} =$
- Output looks like CB (see p. 504 for details) $\rightarrow R_{out} =$
- Transconductance: $G_m =$

Two-Port Model for CE_{deg} (cont.)

• Find G_m

• Voltage Gain:

• Is it a good voltage amplifier (vs. CE)?

Output "Swing"

• Maximum $v_{OUT} = V_{OUT} + v_{out} = v_{out}$

• Minimum *v*_{OUT}