Lecture 3

- Last time:
- Imaginary exponentials: simplify the math
- Phasor: complex "prefactor" for $e^{j \omega t}$
- Today:
- Complex number review
- Circuit analysis with phasors

Complex Number Summary

- Rectangular form: $z=x+j y$
- Magnitude $|z|=$
- Phase

$$
\angle z=
$$

- Polar form:
- Useful results (easily shown in polar form):

$$
\left|z_{1} z_{2}\right|=\quad \angle\left(z_{1} z_{2}\right)=
$$

Question: $\sqrt{j}=$

Using Phasors: Capacitor Current

Result:

Impedance of a Capacitor

Definition: the impedance Z of a two-terminal circuit element is the ratio of the phasor voltage to the phasor current (positive reference convention)
$I_{c} \left\lvert\, C \frac{++}{\square_{-}} V_{c} \quad Z_{c}=\right.$

Admittance: $\quad Y_{c}=1 / Z_{c}=$

Using Phasors: Inductor Voltage

Result:

Inductor Impedance

$$
Z_{L}=
$$

Admittance: $\quad Y_{L}=1 / Z_{L}=$

Kirchhoff's Current Law Example

At node a :

Circuit Analysis with Phasors

Assumption: sources are sinusoidal, steady-state!

Redrawing the Circuit with Impedances

Note: this is not a "real" circuit that could be built and tested!

Transfer Function

Ratio of output to input phasor is called the transfer function of the circuit:

$$
H=\frac{V_{c}}{V_{s}}=
$$

Bode Plots

1. Plot magnitude $|H|$ in dB vs. ω (log scale)
2. Plot phase $\angle H$ in degrees vs. ω (log scale)
