Lecture 3

- Last time:
 - Imaginary exponentials: simplify the math
 - Phasor: complex "prefactor" for $e^{j\omega t}$
- Today :
 - Complex number review
 - Circuit analysis with phasors

Complex Number Summary

- Rectangular form: z = x + jy
 - Magnitude |z| =

- Phase
$$\angle z =$$

- Polar form:
- Useful results (easily shown in polar form): $|z_1 z_2| = \angle (z_1 z_2) =$

Question:
$$\sqrt{j}=$$

EECS 105 Spring 2002 Lecture 3

Using Phasors: Capacitor Current

Result:

Dept. of EECS

University of California at Berkeley

Impedance of a Capacitor

Definition: the impedance Z of a two-terminal circuit element is the ratio of the phasor voltage to the phasor current (positive reference convention)

$$I_c \downarrow C \frac{|+}{|-} V_c \qquad Z_c =$$

Admittance: $Y_c = 1 / Z_c =$

EECS 105 Spring 2002 Lecture 3

Using Phasors: Inductor Voltage

Result:

Dept. of EECS

University of California at Berkeley

Inductor Impedance

Admittance: $Y_L = 1 / Z_L =$

Dept. of EECS

University of California at Berkeley

Kirchhoff's Current Law Example

Circuit Analysis with Phasors

Assumption: sources are sinusoidal, steady-state!

Redrawing the Circuit with Impedances

Note: this is not a "real" circuit that could be built and tested!

Transfer Function

Ratio of output to input phasor is called the transfer function of the circuit:

 $H = \frac{V_c}{V_s} =$

Bode Plots

Plot magnitude | *H* | in dB vs. ω (log scale)
Plot phase <u>/H</u> in degrees vs. ω (log scale)