Lecture 34

- Last time:
 - Improved current sources and current mirrors
 - Start multistage amplifiers
- Today :
 - More examples of cascades
 - DC coupling issues

Multistage Current Buffers

Are two cascaded common-base stages better than one?

Input resistance: $R_{in} = R_{in1}$

Two-Port Models

 $R_{out} = R_{out2} \cong r_{02} (1 + g_{m2} r_{\pi 2} || R_{S2}) || r_{oc2}$

Common-Gate 2nd Stage

Summary of Cascaded Amplifiers

General goals:

Boost the gain parameter (except for buffers)
Optimize the input and output resistances

 R_{in}

Voltage: Current: Transconductance: Transresistance: R_{out}

Second Design Issue: DC Coupling

Constraint: large inductors and capacitors are not available

Output of one stage is directly connected to the input of the next stage \rightarrow must consider DC levels ... why?

R. T. Howe

Alternative CG-CC Cascade

Use a PMOS CD Stage: DC level shifts upward

CG Cascade: DC Biasing

Two stages can have different supply currents

Extreme case: $I_{BIAS2} = 0$ A

R. T. Howe

CG Cascade: Sharing a Supply

First stage has no current supply of its own \rightarrow its output resistance is modified

University of California at Berkeley

Two-Port Model of Common-Gate Cascade with Shared Current Supply

