Lecture 37

- Last time:
- Complete "lecture design" of two-stage CMOS transconductance amplifier
- Today :
- CMOS cascode transconductance amplifier design example

Amplifier Topology

Goals: $R_{\text {in }}$ and $R_{\text {out }}$ should be maximized
Common source - common gate cascode makes sense
Share the current supply

Amplifier Schematic

Note that the backgate connection for M_{2} is not specified: ignore $g_{m b}$

Current Supply Design

Output resistance goal
requires large $r_{o c} \rightarrow$ use cascode current source

Totem Pole Voltage Supply

DC voltages must be set for the cascode current supply transistors M_{3} and M_{4}, as well as the gate of M_{2}.

Why include $M_{2 B}$?

Complete Amplifier Schematic

$$
\text { Goals: } \begin{aligned}
g_{m 1} & =1 \mathrm{mS}, \\
R_{\text {out }} & =10 \mathrm{M} \Omega
\end{aligned}
$$

Device Sizes

$M_{1}:$ select $(W / L)_{1}=200 / 2$ to meet specified $g_{m 1}=1 \mathrm{mS}$ \rightarrow find $V_{B I A S}=1.2 \mathrm{~V}$
Cascode current supply devices: select $V_{S G}=1.5 \mathrm{~V}$
$(W / L)_{4}=(W / L)_{4 \mathrm{~B}}=(W / L)_{3}=(W / L)_{3 \mathrm{~B}}=64 / 2$
$M_{2}:$ select $(W / L)_{2}=50 / 2$ to meet specified $R_{\text {out }}=10 \mathrm{M} \Omega$ \rightarrow find $V_{G S 2}=1.4 \mathrm{~V}$
Match M_{2} with diode-connected device $M_{2 \mathrm{~B}}$.

Assuming perfect matching and zero input voltage, what is $V_{\text {OUT }}$?

Output (Voltage) Swing

Maximum $V_{\text {OUT }}$

Minimum $V_{\text {OUT }}$

Two-Port Model

Find output resistance $R_{\text {out }}$

$$
\begin{aligned}
& \lambda_{n}=(1 / 20) \mathrm{V}^{-1}, \lambda_{n}=(1 / 50) \mathrm{V}^{-1} \text { at } L=2 \mu \mathrm{~m} \rightarrow \\
& r_{o n}=\left(100 \mu \mathrm{~A} / 20 \mathrm{~V}^{-1}\right)^{-1}=200 \mathrm{k} \Omega, r_{o p}=500 \mathrm{k} \Omega
\end{aligned}
$$

$$
g_{m 2}=\frac{2 I_{D 2}}{V_{G S 2}-V_{T n}}=\frac{2(100 \mu A)}{1.4 V-1 V}=500 \mu \mathrm{~S}
$$

$$
g_{m 3}=\frac{2\left(-I_{D 3}\right)}{V_{S G 3}+V_{T p}}=\frac{2(100 \mu A)}{1.5 V-1 V}=400 \mu S
$$

$$
R_{o u t}=r_{o c}\left\|r_{o 2}\left(1+g_{m 2} R_{S 2}\right)=r_{o 3}\left(1+g_{m 3} R_{S 3}\right)\right\| r_{o 2}\left(1+g_{m 2} r_{o 1}\right)
$$

Voltage Transfer Curve

Open-circuit voltage gain: $A_{v}=v_{\text {out }} / v_{\text {in }}=-g_{m 1} R_{\text {out }}$

