Lecture 39

- Last time:
 - BiCMOS voltage amplifier: example of "dissection" technique for a complicated circuit
- Today :
 - Bias and output swing for BiCMOS voltage amp
 - Start open-circuit time constant analysis (back to Chapter 10)

University of California at Berkeley

DC Bias (Cont.)

Simplifying assumption: $V_{GSn} = 1.5V = V_{SGp}$

Cascode current supply and totem pole:

diode connected devices set both source-gate and source-drain voltages

select input bias voltage such that $I_{D1} = I_{D9}$

devices M_1 , Q_2 , M_6 , and M_7 must have same $|V_{DS}|$ or V_{CE} as M_9 , Q_{2B} , M_{6B} , and M_{7B} (2nd order effect) \rightarrow sometimes called "replica biasing"

Output Swing: V_{OUT.MIN}

Minimum output voltage: M_{10} , M_3 , and Q_2 are "suspects"

 M_{10} goes into triode when $V_{OUT} = 0.5$ V

$$M_3$$
 goes into triode when $V_{SD3} = 0.5 \text{ V} \rightarrow V_{OUT} = 0.5 \text{ V} - 0.7 \text{ V} = -0.2 \text{ V}$

$$Q_2$$
 goes into saturation when $V_{CE2} = 0.1$ V
or $V_{BC2} = 0.6$ V
 $V_{OUT} = V_{B2} - V_{BC2} + V_{SG3} - V_{BE4}$
 $= 2$ V - 0.6 V + 1.5 V - 0.7 V
 $V_{OUT} = 2.2$ V

Output Swing: V_{OUT,MAX}

Maximum output voltage: Q_4 , M_5 , and M_6 are "suspects"

 Q_4 goes into saturation when $V_{CE4} = 0.1 \text{ V} \rightarrow V_{OUT} = 4.9 \text{ V}$

 M_5 goes triode when $V_{SD5} = 0.5 \text{ V} \rightarrow V_{OUT} = 3.8 \text{ V}$

M_6 goes triode when $V_{SD6} = 0.5$ V → $V_{OUT} = V_{S6} - 0.5$ V + $V_{SG3} - V_{BE4}$ = 3.5 - 0.5 + 1.5 - 0.7 V = 3.8 V

Frequency Response of Multistage Amplifiers

We need a *systematic technique* rather than a bunch of qualitative results (e.g., CS suffers from Miller effect, CD and CG are wideband stages ...)

Disappointing news: our analytical technique is capable of estimating only the dominant (lowest) pole ... for a restricted class of amplifiers.

The Special Case

The transfer function can have *no zeroes* and must have a *dominant* pole $\omega_1 \ll \omega_2, \omega_3, \dots, \omega_n$

$$H(j\omega) = \frac{H_o}{\left(1 + j\omega b_1 + (j\omega)^2 b_2 + (j\omega)^3 b_3 + \ldots\right)}$$

Factor denominator:

$$H(j\omega) = \frac{H_o}{\left(1 + j\omega / \omega_1\right)\left(1 + j\omega / \omega_2\right)...\left(1 + j\omega / \omega_n\right)}$$

EECS 105 Spring 2002 Lecture 39

Approximating the Transfer Function

Multiply out denominator:

$$H(j\omega) = \frac{H_o}{(1 + j\omega / \omega_1)(1 + j\omega / \omega_2)...(1 + j\omega / \omega_n)} \approx \frac{H_o}{1 + j\omega \left(\frac{1}{\omega_1} + \frac{1}{\omega_2} + ... + \frac{1}{\omega_n}\right)}$$

Since
$$\omega_1 \ll \omega_2, \omega_3, \dots, \omega_n \rightarrow$$

$$b_1 = \frac{1}{\omega_1} + \frac{1}{\omega_2} + \dots + \frac{1}{\omega_n} \approx \frac{1}{\omega_1}$$

Dept. of EECS

University of California at Berkeley

How to Find b_1 ?

See P. R. Gray and R. G. Meyer, *Analysis and Design of Analog Integrated Circuits* (EE 140) for derivation

Result: b_1 is the sum of *open-circuit time constants* τ_i which can be found by considering each capacitor C_i in the amplifier separately and finding its Thévenin resistance $R_{Ti} \rightarrow$

$$\tau_i = R_{Ti} C_i$$
$$b_1 = \sum_{i=1}^n R_{Ti} C_i \longrightarrow \omega_1 \approx \frac{1}{\sum_{i=1}^n R_{Ti} C_i}$$

Finding the Thévenin Resistance

- 1. Open-circuit all capacitors (i.e.; remove them)
- 2. For capacitor C_i , find the resistance R_{Ti} across its terminals with all independent sources removed (voltages shorted, currents opened) ... might need to apply a test voltage and find the current in some cases.

Insight for design: the bandwidth of the amplifier will be limited by the capacitor that contributes the largest $\tau_i = R_{Ti} C_i \rightarrow$ not necessarily the largest C_i