Lecture 4

- Last time:
- Circuit analysis with phasors: impedances
- Bode plot of low-pass filter (start)
- Today:
- Bode plot sketching for first-order transfer functions
- Low-pass and high-pass filters

Bode Plots for Low-Pass Filter

1. Plot magnitude $|H|$ in dB vs. ω (log scale)
2. Plot phase $\angle H$ in degrees vs. ω (log scale)

$$
|H|_{d B}=\left|\frac{1}{1+j \omega \tau}\right|_{d B}=\left[\frac{|1|}{|1+j \omega \tau|}\right]_{d B}
$$

Why?

Sketching the Magnitude Plot

$$
|H|_{d B}=\left[\frac{|1|}{|1+j \omega \tau|}\right]_{d B}=20 \log \left[\frac{1}{\sqrt{1+(\omega \tau)^{2}}}\right]
$$

Low-frequency ($\omega \tau \ll 1$) asymtote
High-frequency ($\omega \tau \gg 1$) asymtote

The Break Frequency $\omega_{-3 \mathrm{~dB}}=(1 / \tau)$

Finding the Phase Plot

$$
\angle(H)=\angle\left[\frac{1}{1+j \omega \tau}\right]=0-\arctan (\omega \tau)
$$

Why?

Low-frequency asymtote
High-frequency asymtote

Approx. linear with ω for $1 /(10 \tau)<\omega<10 / \tau$

Rapidly Sketching the Phase Plot

Average Power and Phasors

Integrate $P(t)$ over one period:

$$
\begin{aligned}
& \langle P\rangle=\int_{0}^{T} i(t) v(t) d t=\int_{0}^{T}|I| \cos (\omega t+\angle I)|V| \cos (\omega t+\angle V) d t \\
& +v(t)= \\
& -|I||V|\left\langle\sum\{\cos (\omega t), \cos (2 \omega t), \sin (\omega t), \sin (2 \omega t)\}\right\rangle+ \\
& \frac{|I \| V|}{2}(\underbrace{\cos \angle I \cos \angle V+\sin \angle I \sin \angle V)} \\
& \text { Result: }\langle P\rangle=\frac{|I \| V|}{2} \cos (\angle I-\angle V)=\operatorname{Re}\left\{I \cdot V^{*}\right\}
\end{aligned}
$$

The High-Pass Filter

Impedance Divider

Insight:

$$
H=\frac{V_{r}}{V_{s}}=
$$

Magnitude Bode Plot

$$
|H|_{d B}=\left|\frac{j \omega \tau}{1+j \omega \tau}\right|_{d B}=|j \omega \tau|_{d B}+\left|\frac{1}{1+j \omega \tau}\right|_{d B}
$$

First term (numerator):

Graphical Addition of Magnitudes

Phase Bode Plot for HPF

