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Lecture 6

• Last time:
– Rapid sketching techniques for more 

complicated transfer functions

• Today :
– 2nd order circuits in the time and frequency 

domains
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A Second Order System
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Where does the inductor come from?

Do step response:  vS(t) jumps to VDD at t = 0
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Step Response of L-R-C Circuit

Initial conditions: vC(t=0) = 0 V; iL (t=0) = 0 A
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Solving the 2nd Order ODE

DDC
CC Vv

dt
dvRC

dt
vdLC =++2

2

Steady-state solution:  vC,ss = VDD )( ∞→t

Transient solution:  vC,tr = ?  … guess vC,tr = aest

and substitute: ( ) ( ) 02 =++ ststst aeaeRCsaeLCs

( ) ( ) 0)/(1/2 =++ LCsRLs
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Characteristic Equation

( ) ( ) 0)/(1/2 =++ LCsRLs

Use quadratic formula to find the roots: 
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Underdamped Case
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Form of solution …
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Qualitative Underdamped Waveform 
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Extreme Underdamped Case
Exponential decay time is set by  )2/( LR=α

Small R/L decay takes a long time and 
oscillation has a frequency that’s nearly )/(1 LC

Number of cycles during “ringdown” is 

C
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What happens when R = 0 Ω?
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Agilent Technologies 
IEEE ISSCC 2001

2 GHz resonator

N > 1000

Drive Electrode

Sense Electrode

Thin Piezoelectric Film

C0

Cx Rx Lx

C1 C2
R0

thin-Film Bulk Acoustic Resonator (FBAR)
RF MEMS

•

•

•

•Brian Otis, Jan Rabaey 
(BWRC): low-noise oscillator

•Equivalent Circuit:
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Phasor Analysis of 2nd Order Circuit
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Transfer Function
Simplifying:
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Limiting Cases:  Magnitude and Phase

Low frequency: oωω <<

oωω >>High frequency:

oωω =Resonant frequency:
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Inductor-Capacitor “Tuning”
At resonance, the impedance of the capacitor cancels
the impedance of the inductor phasor current is 
maximum and capacitor voltage peaks

How “sharp” or “narrow” is the resonance?

τωo
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ω
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= oQDefine the quality factor
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Magnitude Bode Plot
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Phase Bode Plot
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