Lecture 8

- Last time:
 - Wrap-up phasor analysis: 2nd order circuits
 - Start semiconductor properties of Si
- Today :
 - Drift velocity
 - Drift current density
 - Resistivity and resistance

Thermal Equilibrium

Rapid, random motion of holes and electrons at "thermal velocity" $v_{th} = 10^7$ cm/s with collisions every $\tau_c = 10^{-13}$ s.

Apply an electric field *E* and charge carriers accelerate ... for τ_c seconds

Drift Velocity and Mobility

$$v_{dr} = a \cdot \tau_c = \left(\frac{F_e}{m_p}\right) \tau_c = \left(\frac{qE}{m_p}\right) \tau_c = \left(\frac{q\tau_c}{m_p}\right) E$$
$$v_{dr} = \mu_p E$$

For electrons:

Dept. of EECS

University of California at Berkeley

EECS 105 Spring2002 Lecture 8

Mobility vs. Doping in Silicon at 300 K

"default" values:

Dept. of EECS

University of California at Berkeley

Velocity Saturation

Drift Current Density (Holes)

Hole case: drift velocity is in same direction as E

hole drift current density

The hole drift current density is:

$$J_p^{dr} = q p \mu_p E$$

Drift Current Density (Electrons)

Electron case: drift velocity is in *opposite* direction as E

electron drift current density

The electron drift current density is:

 $J_n^{dr} = (-q) n v_{dn}$ units: Ccm⁻² s⁻¹ = Acm⁻²

Resistivity

Bulk silicon: uniform doping concentration, away from surfaces

n-type example: in equilibrium, $n_o = N_d$. When we apply an electric field, $n = N_d$.

$$J_n = q\mu_n nE = q\mu_n N_d E$$

Conductivity $\sigma_n =$

Resistivity $\rho_n =$

Ohm's Law

- Current *I* in terms of J_n
- Voltage V in terms of electric field

– Result for *R*

Sheet Resistance

- IC resistors have a specified thickness not under the control of the *circuit* designer
- Eliminate *t* by absorbing it into a new parameter: the *sheet resistance*

$$R = \frac{\rho L}{Wt} = \left(\frac{\rho}{t}\right) \left(\frac{L}{W}\right) = R_{sq} \left(\frac{L}{W}\right)$$