Lecture 34: Designing amplifiers, biasing, frequency response

Prof J. S. Smith

Context
We will figure out more of the design parameters for the amplifier we looked at in the last lecture, and then we will do a review of the approximate frequency analysis of circuits which have a single dominant pole.

Reading
- Chapter 9, multi-stage amplifiers. The frequency analysis is in the first section of chapter 10, but we won’t go farther into chapter 10 for a while.

- The Lectures on Wednesday and Friday will be given by Joe and Jason, respectively. They will be doing several example problems.

Lecture Outline
- Example 1: Cascode Amp Design
- Example 2; CS NMOS->CS PMOS
- Review of frequency analysis (with a dominant pole)
Amplifier Schematic

Note that the backgate connection for M_2 is not specified: ignore g_{m2b}

Complete Amplifier Schematic

Goals: $g_{m1} = 1 \text{ mS}$, $R_{out} = 10 \text{ M}\Omega$

- Bias voltages derived from transistors under similar operating conditions to the transistors they supply
- Cascode current source for high r_{oc}
- CG output
- CS input, with low voltage gain

Current Supply Design

- High impedance current source means all of the small signal current goes to the load resistance, giving more SS voltage gain

- Output resistance goal requires large r_{oc} for high gain → so we used a cascode current source

Totem Pole Voltage Supply

- DC voltages must be set for the cascode current supply transistors M_2 and M_4, as well as the gate of M_2
- M_{2b} supplies the bias quiescent voltage for the CG stage
Miller Capacitance of Input Stage

Find the Miller capacitance for C_{gd1}

Input resistance to common-gate second stage is low \Rightarrow gain across C_{gd1} is small.

Two-Port Model with Capacitors

Miller capacitance: $C_M = (1 - A_{vC_{gd1}})C_{gd1}$

$A_{vC_{gd1}} \approx \frac{g_{m1}}{g_{m2}}$

Schematic

Goals: $g_{m1} = 1$ mS, $R_{out} = 10$ MΩ

Device Sizes

M_1: select $(W/L)_1 = 200/2$ to meet specified $g_{m1} = 1$ mS

\Rightarrow find $V_{BIAS} = 1.2$ V

Cascode current supply devices: select $V_{SG} = 1.5$ V

$(W/L)_4 = (W/L)_B = (W/L)_3 = (W/L)_B = 64/2$
Device Sizes

\(M_2: \) select \((W/L)_2 = 50/2\) to meet specified \(R_{out} = 10 \text{ M\ Ohm} \)

\(\Rightarrow \) find \(V_{GS2} = 1.4 \text{ V} \)

Match \(M_2 \) with diode-connected device \(M_{2B} \).

Assuming perfect matching and zero input voltage, what is \(V_{OUT} \)?

Two-Port Model

Find output resistance \(R_{out} \)

\(\lambda_n = (1/20) \text{ V}^{-1}, \lambda_p = (1/50) \text{ V}^{-1} \) at \(L = 2 \mu m \) \(\Rightarrow \)

\(r_{on} = (100 \mu A / 20 \text{ V}^{-1})^{-1} = 200 \text{ k\ Ohm}, r_{op} = 500 \text{ k\ Ohm} \)

\[g_m = \frac{2I_{DS}}{V_{GS2} - V_T} = \frac{2(100 \mu A)}{1.4V - 1W} = 500 \mu S \]

\[g_m = \frac{2(-I_{DS})}{V_{GS2} + V_T} = \frac{2(100 \mu A)}{1.5V - 1W} = 400 \mu S \]

\[R_{out} = r_{on} \parallel r_{on}(1 + g_{m2}R_{32}) = r_{on}(1 + g_{m3}R_{33}) \parallel r_{on}(1 + g_{m3}r_{on}) \]

Output (Voltage) Swing

Maximum \(V_{OUT} \)

Minimum \(V_{OUT} \)

Voltage Transfer Curve

Open-circuit voltage gain: \(A_v = \frac{v_{out}}{v_{in}} = -g_{m1}R_{out} \)

\[= -10^3 \times 10^7 = \frac{dv_{out}}{dv_{in}} \text{ Ohm} \]

\(\approx -10,000 \)
Multistage Amplifier Design Example

Start with basic two-stage transconductance amplifier:

Why do this combination?

Quiescent level shifts

<table>
<thead>
<tr>
<th></th>
<th>NMOS</th>
<th>PMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>\uparrow (typical)</td>
<td>\uparrow (typical)</td>
</tr>
<tr>
<td>CG</td>
<td>\uparrow</td>
<td>\uparrow</td>
</tr>
<tr>
<td>CD</td>
<td>\downarrow (known shift)</td>
<td>\downarrow (known shift)</td>
</tr>
</tbody>
</table>

Current Supply Design

Assume that the reference is a “sink” set by a resistor

Must mirror the reference current and generate a sink for i_{SUP2}
Use Basic Current Supplies

DC Bias: Find Operating Points

Find V_{BAS} such that $V_{OUT} = 0 \, \text{V}$

Device parameters:

- $\mu_n C_{ox} = 50 \, \mu\text{A}/\text{V}^2$
- $\mu_p C_{ox} = 25 \, \mu\text{A}/\text{V}^2$
- $V_{TH} = 1 \, \text{V}$
- $V_{TP} = -1 \, \text{V}$
- $\lambda_n = 0.05 \, \text{V}^{-1}$
- $\lambda_p = 0.05 \, \text{V}^{-1}$

Device dimensions (for “lecture” design):

- $(W/L)_n = 50/2$
- $(W/L)_p = 80/2$

Complete Amplifier Topology

Finding R_{REF}

Require $I_{REF} = -I_{D3} = 50 \, \mu\text{A}$

\[
V_{SG3} = -V_{TP} - \frac{-2I_{D3}}{\mu_p C_{ox} (W/L)_p}
\]

\[
V_{SG3} = -(1)(-1) + \frac{2\times 50 \mu\text{A}}{25\mu\text{A} (80/2)} = 1 + \frac{4}{40} = 1.32 \, \text{V}
\]

\[
I_{REF} = 50 \mu\text{A} = \frac{[V' - V_{SG3} - V']}{R_{ref}}
\]

\[
50 \mu\text{A} = \frac{[2.5 - 1.32] - [2.5]}{R_{ref}} \Rightarrow R_{ref} = 74 \, \text{k}\Omega
\]
DC Operating Point

\[I_{REF} = 50 \ \mu A \]

\[V_{MOS} = 2.5 \ \text{V} \]

\[V_{BLIS} = \sqrt{2 I_D \frac{2 I_D}{V_{GS}^2 (W/L)}} = 1 + \frac{100 \mu A}{50 \mu A (V/2)^2} \approx 2 \ \text{V} \]

Small-Signal Device Parameters

Transistors \(M_1 \) and \(M_2 \)

\[g_{m1} = 350 \ \mu S \quad r_{o1} = 400 \ \text{k} \Omega \]

\[g_{m2} = 315 \ \mu S \quad r_{o2} = 400 \ \text{k} \Omega \]

Current supplies \(i_{SUP1} \) and \(i_{SUP2} \)

\[r_{ac1} = r_{ac4} = 400 \ \text{k} \Omega \]

\[r_{ac2} = r_{ac6} = 400 \ \text{k} \Omega \]

Two-Port Model

Find \(G_m = \frac{i_{out}}{v_{in}} \)

Output Voltage Swing

\[V^* = 2.5 \ \text{V} \]

Transistors \(M_2 \) and \(M_6 \) will limit the output swing
Limits to Output Voltage

\[M_6 \] will leave saturation when \(V_{\text{OUT}} \) drops to:

\[
V_{\text{OUT},\text{MIN}} = V^+ + V_{\text{SDS},\text{sat}} = -2.5 + \frac{2I_{D6}}{\mu C_{\text{ox}}(W/L)_6}
\]

\[V_{\text{OUT},\text{MIN}} = -2.5 + 0.28 = -2.22 \text{ V} \]

\(M_2 \) will leave saturation when \(V_{\text{OUT}} \) rises to:

\[
V_{\text{OUT},\text{MAX}} = V^+ - V_{\text{SDS},\text{sat}} = 2.5 - \frac{2(-I_{D2})}{\mu C_{\text{ox}}(W/L)_2}
\]

\[V_{\text{OUT},\text{MAX}} = 2.5 - 0.32 = 2.18 \text{ V} \]

What about \(M_4 \)?

Output Current Limits

- Positive output current (negative \(V_{\text{OUT}} \))

\[
i_{\text{OUT,MAX}} = i_{D6} - (0) = 50 \mu A = -V_{\text{OUT,MIN}} / R_L
\]

\[V_{\text{OUT,MIN}} = -(50 \mu A)(25 \Omega) = -1.25V \]

(less negative than limit set by saturation of \(M_6 \))

- Negative output current (positive \(V_{\text{OUT}} \))

No limit on current from \(M_2 \), so voltage swing sets current limit

\[
i_{\text{OUT,MIN}} = -V_{\text{OUT,MAX}} / R_L = -(2.18V / 25\Omega) = -87.2 \mu A
\]

Output Current Swing

Load resistor: pick \(R_L = 25 \text{ k}\Omega \)

Output current:

\[i_{\text{OUT}} = -V_{\text{OUT}} / R_L \]

\[i_{\text{OUT}} = i_{D6} - (-i_{D2}) \]

Limits: asymmetrical

\(M_2 \): can increase \(-i_{D2}\)

\(M_6 \): can’t increase \(i_{D6} \)

Transfer Curves (for \(R_L = 25 \text{ k}\Omega \))

Loaded voltage gain:

\[\frac{v_{\text{OUT}}}{v_{\text{IN}}} = \left(g_{m1}(R_{\text{out}}) \right) \left(g_{m2}(R_{\text{out}} + R_L) \right) = 490 \]

Loaded transconductance:

\[\frac{i_{\text{OUT}}}{v_{\text{IN}}} = (-g_{m1}) \left(g_{m2}(R_{\text{out}} + R_L) \right) = -19.5 \text{ mS} \]
Review: Frequency Resp of Multistage Amplifiers

- We have a systematic technique to study amplifier performance (derive transfer function, study poles/zeros/Bode plots).
- In most cases, the systematic approach is too cumbersome.
- We have a good qualitative understanding of circuit performance (e.g., CS suffers from Miller effect, CD and CG are wideband stages ...)
- Open Circuit Time Constants: Analytical technique is capable of estimating only the dominant (lowest) pole ... for a restricted class of amplifiers.

The Special Case

The transfer function can have no zeroes and must have a dominant pole \(\omega_1 << \omega_2, \omega_3, \ldots, \omega_n \)

\[
H(j\omega) = \frac{H_o}{(1 + j\omega/\omega_1)(1 + j\omega/\omega_2)(1 + j\omega/\omega_n)}
\]

Factor denominator:

\[
H(j\omega) = \frac{H_o}{(1 + j\omega/\omega_1)(1 + j\omega/\omega_2)(1 + j\omega/\omega_n)}
\]

Approximating the Transfer Function

Multiply out denominator:

\[
H(j\omega) = \frac{H_o}{1 + j\omega/\omega_1}(1 + j\omega/\omega_2)(1 + j\omega/\omega_n)
\]

Since \(\omega_1 << \omega_2, \omega_3, \ldots, \omega_n \)

\[
b_1 = \frac{1}{\omega_1} + \frac{1}{\omega_2} + \ldots + \frac{1}{\omega_n} \approx \frac{1}{\omega_1}
\]

How to Find \(b_1 \)?

Result: \(b_1 \) is the sum of open-circuit time constants \(\tau_i \) which can be found by considering each capacitor \(C_i \) in the amplifier separately and finding the Thévenin resistance \(R_{\tau_i} \) of the network from the capacitor’s point of view

\[
\tau_i = R_{\tau_i} C_i
\]

\[
b_1 = \sum_{i=1}^{\infty} R_{\tau_i} C_i \rightarrow \omega_1 \approx \frac{1}{\sum_{i=1}^{\infty} R_{\tau_i} C_i}
\]
Finding the Thévenin Resistance

1. Open-circuit all capacitors (i.e.; remove them)

2. For capacitor C_i, find the resistance R_{Ti} across its terminals with all independent sources removed (voltages shorted, currents opened) … might need to apply a test voltage and find the current in some cases.

Insight for design: the bandwidth of the amplifier will be limited by the capacitor that contributes the largest

$$\tau_i = R_{Ti} C_i \Rightarrow$$ not necessarily the largest C_i