Lecture 11
Bipolar Amplifiers (Part 2)

Common Base (CB) Amplifier

- In common base topology, where the base terminal is biased with a fixed voltage, emitter is fed with a signal, and collector is the output.

CB Core

- The voltage gain of CB stage is \(g_m R_C \), which is identical to that of CE stage in magnitude and opposite in phase.

Tradeoff between Gain and Headroom

- To maintain the transistor out of saturation, the maximum voltage drop across \(R_C \) cannot exceed \(V_{CC} - V_{BE} \).

\[
A_v = \frac{I_C}{V_T} R_C = \frac{V_{CC} - V_{BE}}{V_T}
\]
Simple CB Example

\[A_v = g_m R_C = 17.2 \]
\[R_1 = 22.3 \, \text{K}\Omega \]
\[R_2 = 67.7 \, \text{K}\Omega \]

Input Impedance of CB

- The input impedance of CB stage is much smaller than that of the CE stage.

Input Impedance Formula

\[R_{in} = \frac{1}{g_m} \]

Practical Application of CB Stage

- To avoid “reflections”, need impedance matching.
- CB stage's low input impedance can be used to create a match with 50 Ω.

Output Impedance of CB Stage

- The output impedance of CB stage is similar to that of CE stage.

\[R_{out} = r_o \parallel R_L \]
CB Stage with Source Resistance

With an inclusion of a source resistor, the input signal is attenuated before it reaches the emitter of the amplifier; therefore, we see a lower voltage gain.

This is similar to CE stage emitter degeneration; only the phase is reversed.

Practical Example of CB Stage

An antenna usually has low output impedance; therefore, a correspondingly low input impedance is required for the following stage.

Realistic Output Impedance of CB Stage

The output impedance of CB stage is equal to R_C in parallel with the impedance looking down into the collector.

Output Impedance of CE and CB Stages

The output impedances of CE, CB stages are the same if both circuits are under the same condition. This is because when calculating output impedance, the input port is grounded, which renders the same circuit for both CE and CB stages.
Fallacy of the “Old Wisdom”

- The statement “CB output impedance is higher than CE output impedance” is flawed.

Comparison of CE and CB Stages with Base Resistance

- The voltage gain of CB amplifier with base resistance is exactly the same as that of CE stage with base resistance and emitter degeneration, except for a negative sign.

Input Impedance of CB Stage with Base Resistance

- The input impedance of CB with base resistance is equal to $1/g_m$ plus R_B divided by $(\beta+1)$. This is in contrast to degenerated CE stage, in which the resistance in series with the emitter is multiplied by $(\beta+1)$ when seen from the base.
Input Impedance Seen at Emitter and Base

$$\frac{1}{g_m} + \frac{R_B}{(\beta+1)} R_E$$

$$r_n + (\beta+1) R_E$$

Input Impedance Example

\[
R_X = \frac{1}{g_{m2}} + \frac{1}{\beta + 1} \left(\frac{1}{g_{m1}} + \frac{R_B}{\beta + 1} \right)
\]

- To find the R_X, we have to first find R_{eq}, treat it as the base resistance of Q_2 and divide it by $(\beta+1)$.

Bad Bias Technique for CB Stage

- Unfortunately, no emitter current can flow.

Still No Good

- The input signal is shorted to ground. The circuit still does not amplify.
Proper Biasing for CB Stage

Reduction of Input Impedance Due to RE

\[
R_{in} = \frac{1}{g_m} \parallel R_E
\]

\[
\frac{v_{out}}{v_{in}} = \frac{1}{1 + \left(1 + g_m R_E\right) \frac{R_E}{g_m R_C}}
\]

- The reduction of input impedance due to \(R_E\) is bad because it shunts part of the input current to ground instead of to \(Q_1\) (and \(R_C\)).

Creation of \(V_b\)

Example of CB Stage with Bias

- Resistive divider lowers the gain.
- To remedy this problem, a capacitor is inserted from base to ground to short out the resistor divider at the frequency of interest.

- For the circuit shown above, \(R_E >> 1/g_m\).
- \(R_1\) and \(R_2\) are chosen so that \(V_b\) is at the appropriate value and the current that flows thru the divider is much larger than the base current.
- Capacitors are chosen to be small compared to \(1/g_m\) at the required frequency.
Emitter Follower (Common Collector Amplifier)

- **Output Sensed at Emitter**
- **Input Applied to Base**

Emitter Follower Core

- When the input is increased by ΔV, output is also increased by an amount that is less than ΔV due to the increase in collector current and hence the increase in potential drop across R_E.
- However the absolute values of input and output differ by a V_{BE}.

Small-Signal Model of Emitter Follower

- The voltage gain is unity because a constant collector current ($= I_1$) results in a constant V_{BE}, and hence V_{out} follows V_{in} exactly.

Unity-Gain Emitter Follower

- As shown above, the voltage gain is less than unity and positive.
Analysis of Emitter Follower as a Voltage Divider

Emitter Follower with Source Resistance

Input Impedance of Emitter Follower

Emitter Follower as Buffer

- The input impedance of emitter follower is exactly the same as that of CE stage with emitter degeneration. This is not surprising because the input impedance of CE with emitter degeneration does not depend on the collector resistance.

- Since the emitter follower increases the load resistance to a much higher value, it is suited as a buffer between a CE stage and a heavy load resistance to alleviate the problem of gain degradation.
Output Impedance of Emitter Follower

Emitter follower lowers the source impedance by a factor of \(\beta+1 \) → improved driving capability.

\[
R_{out} = \left(\frac{R_s}{\beta+1} + \frac{1}{g_m} \right) \| R_E
\]

Emitter Follower with Early Effect

Since \(r_O \) is in parallel with \(R_E \), its effect can be easily incorporated into voltage gain and input and output impedance equations.

\[
A = \frac{R_s \| r_o}{R_s \| r_o + \frac{R_E}{\beta+1} + \frac{1}{g_m}}
\]

\[
R_{in} = r_e + (\beta+1)(R_e \| r_o)
\]

\[
R_{out} = \left(\frac{R_s}{\beta+1} + \frac{1}{g_m} \right) \| R_E \| r_o
\]

Current Gain

There is a current gain of \((\beta+1) \) from base to emitter.

Effectively speaking, the load resistance is multiplied by \((\beta+1) \) as seen from the base.

Emitter Follower with Biasing

A biasing technique similar to that of CE stage can be used for the emitter follower.

Also, \(V_b \) can be close to \(V_{cc} \) because the collector is also at \(V_{cc} \).
Supply-Independent Biasing

By putting a constant current source at the emitter, the bias current, V_{BE}, and $I_{B}R_{B}$ are fixed regardless of the supply value.

Summary of Amplifier Topologies

- The three amplifier topologies studied so far have different properties and are used on different occasions.
- CE and CB have voltage gain with magnitude greater than one, while follower's voltage gain is at most one.

Amplifier Example I

- The keys in solving this problem are recognizing the AC ground between R_1 and R_2, and Thevenin transformation of the input network.

Amplifier Example II

- Again, AC ground/short and Thevenin transformation are needed to transform the complex circuit into a simple stage with emitter degeneration.
Amplifier Example III

The key for solving this problem is first identifying R_{eq}, which is the impedance seen at the emitter of Q_2 in parallel with the infinite output impedance of an ideal current source. Second, use the equations for degenerated CE stage with R_E replaced by R_{eq}.

$R_{in} = \frac{1}{\beta + 1} \left(\frac{R_y}{\beta + 1} + \frac{1}{g_{m2}} \right) || R_E + \frac{1}{g_{m1}}$

Amplifier Example IV

The key for solving this problem is recognizing that C_B at frequency of interest shorts out R_2 and provide a ground for R_1.

$A_v = \frac{R_{C} \parallel R_1}{R_S + \frac{1}{g_{m}}}$

Amplifier Example V

The key for solving this problem is recognizing the equivalent base resistance of Q_1 is the parallel connection of R_E and the impedance seen at the emitter of Q_2.

$R_{in} = \frac{1}{\beta + 1} \left[\frac{R_y}{\beta + 1} + \frac{1}{g_{m2}} \right] || \frac{1}{g_{m1}}$

Amplifier Example VI

The key in solving this problem is recognizing a DC supply is actually an AC ground and using Thevenin transformation to simplify the circuit into an emitter follower.

$V_{in} = R_{E} || R_2 || R_{Therm} || R_{Therm} \parallel R_2 \parallel R_2 \parallel R_0$

$V_{out} = \frac{R_{Therm} \parallel R_2 \parallel R_2 \parallel R_0}{R_{Therm} \parallel R_2 \parallel R_2 \parallel R_0} \parallel R_1 \parallel R_1 \parallel R_0$
Impedances seen at the emitter of Q₁ and Q₂ can be lumped with R_C and R_E, respectively, to form the equivalent emitter and collector impedances.