1. The cascode in Figure 1 is biased by an ideal current source. Let $R_s = 51 \, \Omega$, $I_S = 1 \times 10^{-15} \, \text{A}$, $V_A = 100 \, \text{V}$, $\beta = 200$, $I_{SUP} = 1 \, \text{mA}$, $T = 300 \, \text{K}$, $v_{OUT,DC} = 3.5 \, \text{V}$, and $V_{BIAS2} = 2 \, \text{V}$. Calculate V_{BIAS1} to match these biasing conditions.

\[V_{BIAS1} = \]
2. What is the gain of this amplifier?

\[A_v = \]

Figure 2: Multi-stage amplifier

3. Now construct a SPICE netlist for the multi-stage amplifier shown in Figure 2. Let \(R_C = 10 \, \text{k}\Omega \), \(R_S = 51 \, \text{k}\Omega \), and \(R_{REF} = 200 \, \Omega \). Bias transistor \(Q_1 \) with \(V_{BE1} = 560 \, \text{mV} \). What is the small signal gain \((A_{v1}) \) between \(v_{IN} \) and \(v_{OUT1} \)? What is the small signal gain \((A_{v2}) \) between \(v_{OUT1} \) and \(v_{OUT2} \)? Using \(A_{v1} \) and \(A_{v2} \), find the overall gain \((A_{v, tot}) \) between \(v_{IN} \) and \(v_{OUT2} \). Attach the SPICE netlist to the end of this prelab.

\[A_{v1} = \]
\[A_{v2} = \]
\[A_{v, tot} = \]