Razavi 11.4 c and d. Assume that the transistors are biased so that \(I_d=10\mu A, V_{dsat}=200\text{mV}, \lambda=1/(10\text{V}) \). \(C_L=100\text{fF} \).

Razavi 11.\{6, 33, 42, 57\}

Problem 3

A) Plot the magnitude of the impedance of a 100\(\mu\)H inductor with 1 Ohm wire resistance over the frequency range from 1 to 100 Mrad/sec. On the same plot, plot the magnitude of the impedance of a 100pF capacitor (and the result from 4B below). (as with all such plots, use log/log axes)

B) If you connect the inductor and capacitor in parallel to form an LC tank, what is the resonant frequency in radians/sec and Hz?

C) What is the impedance of the inductor at the resonant frequency of the tank? What is the impedance of the capacitor at the resonant frequency of the tank?

D) What is the Q of the inductor (the impedance at resonant frequency divided by the wire resistance)?

Problem 4:

A) Write an expression for the complex impedance of an LC tank with a resistor in series with the inductor. What is the magnitude of the impedance of the tank at resonance?

B) Assuming \(L=100\mu\)H, \(R=1\)Ohm, and \(C=100\)pF, what is the magnitude and phase of the tank impedance at resonance? Add this point to your plot for problem 3A.

C) Use spice to plot the magnitude and phase of the impedance of the LC tank in part B. Compare to your hand drawing in problem 1A.