
UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering

Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Experiment 1: Introduction to SPICE

1 Objective

SPICE stands for Simulation Program with Integrated Circuit Emphasis. It is the predominant tool used
to simulate circuits and was developed at UC Berkeley in the 1970s. You will be using SPICE extensively
in your circuit design courses, and this lab will teach you how to use a popular commercial package called
HSPICE, one of many implementations based on the original Berkeley SPICE. You will learn how to specify
and analyze a circuit with HSPICE and how to plot the results of your analysis with a tool called Avanwaves,
or Awaves for short.

2 Materials

For this lab, all you need is a computer with HSPICE installed. You can use either the Windows or UNIX
version, but you will have to read the appropriate documentation for whichever version you choose. The
computers located in the EE105 lab in 353 Cory are Windows machines with the Windows version of HSPICE
installed, so if you’re working in lab you should use the Windows version. If you need to use HSPICE at
home, you can either use Windows Remote Desktop to login to a Windows server and use the Windows
version of HSPICE, or you can use SSH to login to a UNIX server and use the UNIX version of HSPICE.

3 Procedure

3.1 Transient Analysis

1. Write a netlist for the circuit in Figure 1, a simple RC low-pass filter. Let vs be a 1 kHz square wave
oscillating between 0 V and 5 V. You can model this square wave using the PULSE source type.

−

vs

+ 1 kΩ

0.1 µF

+

vo

−

Figure 1: Low-pass filter

2. Run a transient analysis on this circuit from t = 0 ms to t = 10 ms.

3. Use Awaves to generate plots for vs and vo as functions of time. Print copies of these plots.

4. In Awaves, use the cursor to estimate how long it takes for the capacitor to charge from 0 V to 3.16 V
(note that 3.16 is 5 (1 − 1/e) ≈ 0.63 · 5). Is this value close to what you’d expect?

5. Now, use a .measure statement to measure how long it takes for the capacitor to charge from 0 V to
3.16 V. How does this compare to your result obtained from the graph in Awaves? Note: If you’re
using TRIG/TARG, you must use a non-zero value for the TRIG. If you want to measure from zero,
simply use a very small, but non-zero, TRIG value.

1

3 PROCEDURE 2

6. Adjust the step time used in your transient analysis (try making it larger and smaller). Does this
variation change the result of your .measure statement?

3.2 DC Analysis

1. Figure 2(a) shows a transistor called an n-MOSFET, short for n-channel metal-oxide-semiconductor
f ield effect transistor. We often call these NMOS or NFETs for short. Although you haven’t learned
how these work yet, you can still simulate them in SPICE. The terminals of the device are labeled for
you: Drain, Gate, Source, and Body. In this case, the body is connected to the source, a configuration
we’ll see often in this course. In this configuration, transistors are often drawn as in Figure 2(b).

−

+VGS

G

S

D

B

ID

−

+ VDD

(a)

−

+VGS

G

S

D

ID

−

+ VDD

(b)

Figure 2: (a) NMOS transistor with body terminal explicity shown (b) NMOS transistor with body
implicity tied to source

2. Write a netlist for the circuit in Figure 2 using the following parameters:

• Step VGS from 0 V to 5 V in increments of 1 V.

• Sweep VDD from 0 V to 5 V in increments of 0.1 V.

• The model for the NMOS should have the following parameters: kp=60e-6 vt0=1 lambda=0.05

• The dimensions of the transistor are W/L = 4.5 µm/1.5 µm

3. Use Awaves to plot ID versus VDD with all the values of VGS you stepped in your DC analysis. Note:
You may have to invert ID in Awaves—it should be positive and increasing with VDD in your plot.
Everything should be shown on one graph. These are the I-V curves for a typical NMOS transistor.

3.3 TF Analysis

1. Figure 3 shows the small-signal model for a NPN BJT, short for bipolar junction transistor. We often
model transistors with simpler, linear components in order to analyze them. Once again, we’ve labeled
the terminals for you: Collector, Base, and Emitter.

−

vs

+

RB

B

rπ

+

vπ

−

gmvπ

C

ro

RC

+

vo

−

E

RE

Figure 3: A small-signal model of a BJT

4 APPENDIX 3

2. Write a netlist for the circuit in Figure 3 using the following parameters:

• RB = 1 kΩ, rπ = 2.6 kΩ, RC = 10 kΩ, RE = 5 kΩ, ro = 24 kΩ, gm = 38 mS

• Use a .tf statement to find the voltage gain, Av = vo/vs.

4 Appendix

4.1 Syntax Reference

This is the same syntax reference supplied in the HSPICE tutorial. Any bracketed labels must be replaced
entirely (i.e. if you want a value of 5 V, you should replace <value> with 5V).

• Independent voltage source
v<name> <+ terminal> <- terminal> <value>

• Independent current source
i<name> <+ terminal> <- terminal> <value>

• Voltage-controlled voltage source
E<name> <+ terminal> <- terminal> <+ control> <- control> <gain>

• Current-controlled voltage source (vcontrol refers to the voltage source which the controlling current
flows through)
H<name> <+ terminal> <- terminal> <vcontrol> <gain>

• Voltage-controlled current source
G<name> <+ terminal> <- terminal> <+ control> <- control> <gain>

• Current-controlled current source (vcontrol refers to the voltage source which the controlling current
flows through)
F<name> <+ terminal> <- terminal> <vcontrol> <gain>

• Sinusoidal source (used as a <value>)
sin(<offset> <amplitude> <frequency> <delay> <damping> <phase>)

• Square wave source (used as a <value>)
pulse(<vmin> <vmax> <delay> <rise time> <fall time> <pulse width> <period>)

• Piece-wise linear source (used as a <value>)
pwl(<t0> <v0> <t1> <v1> <t2> <v2> ...)

• Resistor
r<name> <terminal 1> <terminal 2> <value>

• Capacitor
c<name> <terminal 1> <terminal 2> <value>

• Inductor
l<name> <terminal 1> <terminal 2> <value>

• Model (type can be nmos, pmos, NPN, PNP, or D for diode)
.model <name> <type> (<parameter list>)

• MOSFET (you can specify additional parameters, such as W=<value> L=<value>, in the parameter
list)
m<name> <drain> <gate> <source> <body> <model> <parameter list>

• BJT
q<name> <collector> <base> <emitter> <model> <parameter list>

4 APPENDIX 4

• Diode
d<name> <+ terminal> <- terminal> <model> <parameter list>

• AC analysis (pick either lin, dec, or oct)
.ac <lin|dec|oct|> <number of samples> <freq start> <freq stop>

• DC analysis
.dc <source> <start> <stop> <step>

• Nested DC analysis (source1 is swept, source2 is stepped)
.dc <source1> <start1> <stop1> <step1> <source2> <start2> <stop2> <step2>

• Transient analysis
.tran <t step> <t stop>

• TF analysis
.tf v(<node>) <source>

• PZ analysis
.pz v(<node>) <source>

4.2 Using a GUI

There are many graphical editors for SPICE netlists available. In the HSPICE tutorial and in this lab,
we’ve mostly concentrated on the actual syntax behind netlists. Now that you’re familiar with netlists,
the transition to a graphical editor should be quite straightforward. Although we aren’t going to provide
tutorials for these programs, we will point you to other documentation that should help you get started.

One SPICE GUI that is available on the lab computers is called Multisim. It is available under Start →

Programs → Electronics Workbench → Multisim 9 → Multisim 9. Multisim is not available through Remote
Desktop, so you must be in lab to use Multisim. A tutorial, written by B. Muthuswamy and B. Boser, is
available here.

A free SPICE GUI called XCircuit is also available. It will allow you to draw a circuit, then export the
drawing to a netlist. It will not handle analysis statements, so you will still have to edit the netlist by hand
after exporting the netlist.

http://nonlinear.eecs.berkeley.edu/bharath/temp/EE100-MultiSim-Tutorial-2.00.doc
http://opencircuitdesign.com/xcircuit/

	Objective
	Materials
	Procedure
	Transient Analysis
	DC Analysis
	TF Analysis

	Appendix
	Syntax Reference
	Using a GUI

