UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Prelab 3: Bipolar Junction Transistor Characterization

Name:

Lab Section:

1. For the NPN device shown below in Figure 1, fill in I_C , I_B , and I_E next to the current arrows.

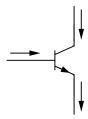


Figure 1: A simple NPN device for warming up

2. What is β in terms of I_C and I_B ? What is α in terms of I_C and I_E ? Express α in terms of β .

$$\beta(I_C, I_B) =$$

$$\alpha(I_C, I_E) =$$

$$\alpha(\beta) =$$

3. SPICE

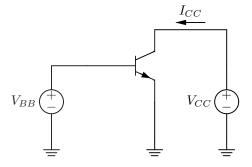


Figure 2: Circuit to simulate in SPICE

- Write a SPICE netlist for the BJT test circuit shown in Figure 2. Refer to the HSPICE Tutorial if you have trouble with SPICE.
- Use the 2N4401 SPICE model provided on the course website.

- Using the .dc command, sweep V_{CC} from 0 V to 5 V in 0.01 V increments and step V_{BB} from 0.6 V to 0.7 V in 0.025 V increments.
- Run the simulation and check the output file for any errors.
- If there are no errors, plot I_{CC} versus V_{CC} and print out a copy of the plot. Note: If you notice that I_{CC} is negative, use Awaves to plot the absolute value of I_{CC} . I_{CC} appears to be negative because SPICE defines I_{CC} to be going out of the BJT.
- 4. The configuration shown below in Figure 3 is known as the Darlington pair. Assume Q_1 has a DC current gain of β_1 and Q_2 has a DC current gain of β_2 . Derive the overall current gain, $\beta_{tot} = I_{C2}/I_{B1}$, as a function of β_1 and β_2 . Do not neglect any currents.

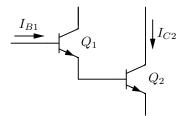


Figure 3: Darlington configuration

 $\beta_{tot} =$