UNIVERSITY OF CALIFORNIA AT BERKELEY
 College of Engineering
 Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Report 3: Bipolar Junction Transistor Characterization

Name:
Lab Section:
3.1 \& 3.2 For each measurement of $V_{B E}, V_{B C}, I_{B}$, and I_{C}, fill in the corresponding entry in Table and compute the resulting β and α.

Parameters	Forward Active	Saturation	Cutoff	Reverse Active
$V_{B E}$				
$V_{B C}$				
I_{B}				
I_{C}				
β		N/A	N/A	
α		N/A	N/A	

Table 1: Regions of operations and measurements
3.1.2 Measure $V_{B E}$ and $V_{B C}$. What is the region of operation?

$V_{B E}=$
$V_{B C}=$

3.1.3 Measure I_{B} and compute β.

$I_{B}=$
$\beta=$

3.1.4 Calculate I_{E} using α and measure I_{E}. Do the results agree?

	$\alpha=$
	$\alpha=$
(Calculated)	$I_{E}=$
(Measured)	$I_{E}=$

3.1.5 Measure I_{B} and I_{C} with your fingers around the BJT. How do the values compare to the values without heating the BJT?

$I_{B}=$
$I_{C}=$

3.1.6 Explain, using the equation you know for collector current, how you'd expect I_{C} to vary with temperature. Does this agree with your experimental results? If not, explain why this might be the case. Hint: I_{S} depends on the intrinsic carrier concentration n_{i} and the diffusion coefficients D_{n} and D_{p}. Intuitively, how would n_{i}, D_{n}, and D_{p} change with temperature? How would I_{S} change with temperature as a result?
3.1.7 Does β agree with the value listed in the datasheet? If not, explain why you might see discrepancies.
3.1.8 Set $V_{B B}$ to 4 V and $V_{C C}$ to 2 V . Measure $I_{B}, I_{C}, V_{B E}$, and $V_{B C}$. What is the region of operation?

$I_{B}=$
$I_{C}=$
$V_{B E}=$
$V_{B C}=$

3.1.9 Set $V_{B B}$ to -3 V and $V_{C C}$ to 5 V . Measure $I_{B}, I_{C}, V_{B E}$, and $V_{B C}$. What is the region of operation?

$I_{B}=$
$I_{C}=$
$V_{B E}=$
$V_{B C}=$

3.1.10 Swap the emitter and collector. Set $V_{B B}$ to 4 V and keep $V_{C C}$ at 5 V . Measure $I_{B}, I_{C}, V_{B E}$, and $V_{B C}$. What is the region of operation?

$I_{B}=$
$I_{C}=$
$V_{B E}=$
$V_{B C}=$

Use all of the data you've collected up to this point to fill out Table
3.2.2 Attach the plot of the I-V curve to this worksheet. Label the two regions of operation and draw the boundary between them.
3.2.3 Use the I-V curve to determine V_{A}.

$$
V_{A}=
$$

3.2.4 Repeat your calculation of V_{A} for base voltages of $0.625 \mathrm{~V}, 0.65 \mathrm{~V}, 0.675 \mathrm{~V}$, and 0.7 V (you can step the base voltage in ICS to get this data). Does V_{A} depend on V_{B} ? Why?

V_{B}	V_{A}
0.600 V	
0.625 V	
0.650 V	
0.675 V	
0.700 V	

Table 2: Early voltage calculations
3.3.2 Attach the plot of the I-V curve to this worksheet. What semiconductor device does this I-V curve look like?
3.4.2 Measure $I_{B 1}, I_{C 1}, I_{B 2}$, and $I_{C 2}$. Calculate β_{1} and β_{2}.

$I_{B 1}=$
$I_{C 1}=$
$I_{B 2}=$
$I_{C 2}=$
$\beta_{1}=$
$\beta_{2}=$

3.4.3 What is the overall current gain, $\beta_{t o t}$? Use the formula you derived in the prelab to calculate the total current gain from β_{1} and β_{2} and compare the calculation to your measurement.
(Measured) $\beta_{t o t}=$
(Calculated) $\beta_{t o t}=$

