| PEGGIO | NV | 1,2 | /30 | |---|---|------------------|-----------------| | EECS105
Final | Name | 3,4 | /25 | | 5/8/12 | SID | 5,6 | /30 | | | | 7 | /25 | | NO CALC | CHI ATORG THE LANGE OF THE | 8 | /30 | | NO CALCULATORS – This is a hint. If you feel like you need to use a calculator, you're probably doing the problem | | | /30 | | wrong! | a discussion, you re productly doing the producti | 10 | /20 | | | alf of a silicon sample is doped with 10^{20} | 11 | /30 | | phospl | horous atoms and the other half is doped with 10 ¹⁸ atoms. | 12 | /30 | | | the depletion region be mostly in the N side or the P | 13 | /30 | | side? | | Total | /280 | | | P side | | | | b. In for | ward bias, will the current be mostly holes, or mostly | electrons? | | | | electrons | | | | c. In for | ward bias, will those carriers mostly flow from N to P | , or from P | to N? | | | N to P | | | | d. In rev | erse bias, which carriers, starting from which side, wise leakage current? | ll form the | majority of the | | | electrons on P side | | | | In a tyj Is the | pical NPN transistor operated in the forward active rebase/emitter junction forward or reverse biased? | egion, | | | | forward | | | | b. The ba | ase/collector junction is forward or reverse biased? | | | | | reverse | | | | c. The cu | arrent flowing in the base region is primarily made up
rs, holes or electrons, coming from where and going w | of what typhere? | oe of charge | | | electrons from emitter 1 | | extac | | d. Is the | current in part c a drift current or diffusion current? | 0 0010 | 6004 | | | diffusion | | | | that cu | ase current I_B is primarily made up of holes. What are urrent (i.e. where do the holes go)? | the two co | mponents of | | | diffusion to emitter | -11 | | | 3. In an N | recombination of electrons from & | enitter | | | | IMOS device in saturation, rrent in the channel region is primarily made up of wh | at type of o | arriar holos | | or elec | etrons? | at type of c | arriot, notes | | b. Is that | current due to drift, or diffusion? | | | | | drift - | | | | | | | | [2] [2] [3 [6] [3] [6] [3] [3] /30 /25 /30 /25 /30 /30 /20 /30 /30 /30 | (A.) | | | |-------------|--------|--| | | c. | Is the drain/bulk junction forward or reverse biased? | | 137 | ٠. | reverse blased: | | 17 | | | | | 4. | and the same and the pole common source amplifier with a DC gain of 100. Tou | | | | measure the response at 10kHz and find that the magnitude of the gain is 10 . The transistor is biased such that $g_m=1\text{mS}$. | | | a. | LI ANSLIDI IN Ha | | | b. | | | ea i | c. | What is the low frequency output impedance? | | | d. | What is the output capacitance? | | | | 2TT-100K Set Op 2TT-1K Tod 628 SZ Cout 2TT UF | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | What is the minimum current consumption of a binolar amplifier which achieves a $C = 100^{\circ} \cdot 217.18$ | | | | gain of 4 at 10 ⁶ rad/sec while driving a 1pF load? Hint: find wu, then gm. | | 6 | 7 | W 4 x 10 TO A | | [5 each | ,) | THE THE PART OF TH | | | | Imin = 9m 4 = 1.3 NF | | | 6 | You have a single-pole amplifier with a DC gain of -10 and a pole at 1Grad/sec. You | | | ٠. | apply an input of $\sin(10^6 t) + \sin(10^9 t) + \sin(10^{10} t)$. Write down the output that you | | | | expect to see. $= (61) \cdot = 7 \cdot \cdot$ | | 57 | 1 5 | 19n 7 -10sin(10t)+ 7sin(10t-4)-sin(10 t-2) nag. each 10sin(10t+#)+7sin(10t+#) + sin(10t+#) hase term | | 1127 | Zh | 10 sin(106+ + 7 sin(109+ + 3 11) + sin(1010+ + 11) | | | 2 1 | • | | | 7. | and a | | | | zero-bias base/emitter capacitance of C _{je0} =10pF. The built-in voltage for the base/collector junction is 0.8V, and for the base/emitter junction it's 1V. The | | | | transistor is used in a common-emitter amplifier with the V_{BE} = 0.75V and V_{CE} =4.8V. | | | | The emitter is grounded. The DC gain is -100, and the amplifier is driving a large | | | | | | | a. | Estimate C_{μ} and C_{π} . $C_{\pi} = \frac{10\rho}{\sqrt{1 - 0.25}} = \frac{10}{\sqrt{4}} = 20\rho f$ | | 507 | 82 T | C = 1 = 2 0.40F | | (60) | c #1 | $V_{1} = \frac{4.65}{2}$ V6 | | | b. | Estimate C_{μ} and C_{π} . $C_{\pi} = \frac{10\rho}{\sqrt{1 - 0.35}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ $C_{\pi} = \frac{10\rho}{\sqrt{1 - 0.35}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ Estimate the low-frequency input capacitance. $C_{\pi} = \frac{10\rho}{\sqrt{1 - 0.35}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ Estimate the low-frequency input capacitance. $C_{\pi} = \frac{10\rho}{\sqrt{1 - 0.35}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ $C_{\pi} = \frac{10\rho}{\sqrt{1 - 0.35}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ Estimate the low-frequency input capacitance. $C_{\pi} = \frac{10\rho}{\sqrt{1 - 0.35}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ $C_{\pi} = \frac{10\rho}{\sqrt{6}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ $C_{\pi} = \frac{10\rho}{\sqrt{6}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ $C_{\pi} = \frac{10\rho}{\sqrt{6}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ Estimate the low-frequency input capacitance. $C_{\pi} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ $C_{\pi} = \frac{10\rho}{\sqrt{6}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ $C_{\pi} = \frac{10\rho}{\sqrt{6}} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ Estimate the low-frequency input capacitance. $C_{\pi} = \frac{10\rho}{\sqrt{4}} = 20\rho f$ $C_{$ | | (7) | | 101 Si+ CI = 60 0 F | | [3] | · · c. | | | 27 | | Estimate the input capacitance near the unity gain frequency. $ \varphi_{T} = 20.4 \rho f $ | | PJ | ď | | | a in a mari | и. | The same transistor is used in an emitter-follower with a gain of 0.99. Assuming the same bias conditions, estimate the low-frequency input capacitance. | | (5) | 80 / | | | [3] | | Cu + 6,01 Cm = 0.6 pF | - 8. You have invented a new type of transistor with 3 terminals, X, Y, and Z. The current into the Y terminal is given by $I_Y=A * \operatorname{sqrt}(V_{XZ} * V_{YZ})$, where $A=1 \operatorname{m} A/V$. The current into the X terminal, I_X , is identically 0. The device operates with both V_{XZ} and V_{YZ} between 100mV and 10 V. - a. How would you wire this device up with an ideal current source to make a high gain voltage amplifier? Draw the circuit, and label the nodes on your device. - b. Assuming that the device is biased at an operating point (V*_{XZ}, V*_{YZ}, I*_Y), what is the low-frequency small-signal model for your device? Draw the schematic, and write down an expression for all of the component values. - c. Write a formula the small-signal voltage gain for your amplifier in terms of the bias point variables. d. What bias point would you choose for your amplifier to get maximum gain? Write down the bias voltages and currents, and the resulting gain. sin. $$G_{xx} = \frac{\partial I_{y}}{\partial V_{xx}} = \frac{1}{2} A \sqrt{\frac{V_{yx}}{V_{xx}}}$$ $$G_{0} = \frac{\partial I_{y}}{\partial V_{xx}} = \frac{1}{2} A \sqrt{\frac{V_{xx}}{V_{xx}}}$$ $$G_{0} = \frac{1}{2} = \frac{1}{2} A \sqrt{\frac{V_{xx}}{V_{xx}}}$$ $$G_{0} = \frac{1}{2} = \frac{1}{2} A \sqrt{\frac{V_{xx}}{V_{xx}}}$$ Gain formula $$A_{v} = -g_{m} r = \frac{\sqrt{yz}}{\sqrt{xz}}$$ Bias point and gain $$V_{\chi \neq}^* = 100 \text{ MV} \qquad V_{\chi \neq}^* = 10 \text{ V} \qquad I_{\chi} = 1 \text{ mA} \qquad A_{\chi} = 100 \text{ m}$$ 9. Calculate G_M and R_o as indicated for the following circuits. Assume all transistors are in saturation and that $g_m r_o >> 1$ for all combinations. Transistors labeled the same (e.g. 1 and 1) have the same small signal parameters. Write your answers in terms of the specific small signal parameters, e.g. g_{m3} , r_{o2} , etc. Is this an NMOS or a PMOS FET? PMOS Estimate the threshold voltage for this device. -2,5 [4] [2] If the device is biased with V_{DS} =-2V, and V_{GS} =-4V, estimate the transconductance, output resistance, and intrinsic gain at this bias point | gm
5u5 | r _o | -10 or 10 | |-----------|----------------|-----------| | [5] | [5] | [4] | 11. The circuit below is very similar to the bias circuit from the RC4558 op-amp. The diode D1 is a Zener with a breakdown voltage of 4.7V. The transistors are similar to the ones that you used in lab. a. Assuming that all transistors are biased in forward active and that beta and V_A are infinite, find the DC bias point of the circuit and fill in the following table | Vr | Vb | Vp | I _{R2} | I _{C1} | I _{C2} | I _{C3} | I_{D1} | |-----|----|-----|-----------------|-----------------|-----------------|-----------------|----------| | 4.7 | -4 | 9.3 | ImA | ImA | 1 mf | InA | 5.3mA | | 3 | 3 | 2 | 3 | 2 | 2 | 2. | 3 | b. Design R3 to get I_{C4} to be ten times smaller than I_{C3} . [20] $$I_{R3} = 100 \mu A$$ $R_3 = \frac{60 \text{ mV}}{100 \mu A} = 600 \Omega$ c. If Vcc increases to 20V, would you expect that the magnitude of I_{C3} will: decrease ~2X, decrease less than 10%, stay the same, increase less than 10%, or increase ~2X? Assuming that all transistors are biased in forward active (except in part e) with a beta of 100, and V_A =100V, and that the + and – inputs are both biased near mid-rail, and the amplifier is being used in an external circuit that is not shown. a. Estimate the input current (I_B on one of the input transistors) $$\frac{6\mu A}{2} = \frac{1}{\beta^2}$$ $$\frac{1}{\beta^2}$$ b. Estimate the theoretical maximum source current (positive current into the load) c. Estimate the theoretical maximum sink current (negative current pulled out of the load to ground) d. Estimate the gain from A to B, B to C, and C to D, assuming that the output current is very small, and the current sources are ideal BC: $$1 - 3$$ BC: $1 - 3$ BC: $1 - 3$ BC: $1 - 3$ BC: $1 - 3$ CD: $1 - 4,000$ (5) e. If the op-amp is driving a capacitive load with a 100mV peak-to-peak sine wave centered at Vcc/2, estimate the peak-to-peak amplitude of the waveform at node D. Note that some devices may not remain in forward active. $$3 \times 0.6 + 2 \times 0.1 = V_{Dpp} ZV$$ [4] $1.8V - 1$ $2.3V OK$ $0.2V - 3$