\qquad
\qquad

1	124
2	$/ 16$
3	115
4	125
5	120
Total	

1. Give a short answer to each question. No explanation or justification is required.
a. If we could operate circuits at 300 Centigrade (not

Kelvin), what's a rough estimate of the thermal voltage at that temperature?

$$
26 \mathrm{mV} * 2=52 \mathrm{mV}
$$

b. How would n_{i} for silicon change at that temperature: about the same, a little more/less, a lot more/less?
a lot more
c. If you measure the reverse leakage current of a diode $\left(-\mathrm{I}_{\mathrm{S}}\right)$ at room temperature to be 1 nA , and then increase the temperature to 85 C , will the leakage current increase or decrease, and by roughly what factor chosen from this list: \{a lot less than 2 , roughly 2 , roughly 10 , a lot more than 10 \}

$$
\text { increase, a lot more than } 10
$$

d. At a particular temperature, you calculate the intrinsic carrier concentration for silicon to be $10 \% \mathrm{cc}$. At that temperature, in a sample doped with 10^{14} boron atoms/cc, what are the majority and minority carrier concentrations?

$$
\begin{aligned}
& \text { majority: } 10^{14}=P \\
& \operatorname{minority}=n i^{2} / P=\frac{10^{18}}{10^{14}}=10^{4} / c \mathrm{c}
\end{aligned}
$$

e. At room temperature, you apply 0.7 V to a diode and measure a current of 1 mA . What voltage is necessary to get a current of 2.7 mA ? 10 mA ?

$$
0.726
$$

f. You havéa reverse bias of 5 V across a diode, and measure a capacitance of 10 fF . What reverse bias should you apply to get 5 fF? (accurate to 10%) $\frac{1}{\sqrt{1+\frac{V R}{V_{0}}}} \approx \sqrt{\frac{V_{0}}{V_{R}}}$ for $V_{R} \gg V_{0} \quad V_{R}=4 * 5 \mathrm{~V}=20 \mathrm{~V}$
g. You have a reverse bias across a diode of V_{0}, the builtin potential of that particular diode, and measure a capacitance of 2 pF . What reverse bias should you apply to get a capacitance of 1 pF ? (accurate to 10%)

$$
\frac{1}{\sqrt{1+\sqrt[V]{2}}}=\frac{1}{\sqrt{2}} \quad V_{R}=7 \mathrm{~V}_{0}
$$

h. The current in the channel of an NMOS transistor is due to (pick one) \{drift, diffusion\} of (pick one) \{valence band holes, conduction band electrons\}

16 pts
2. You have invented a new type of transistor with terminals A, B, and C. In the "active" region, defined by $V_{A C}>0, V_{B C}>1$, you have determined the formulas for the currents into nodes A and B are:
$\mathrm{I}_{\mathrm{A}}=\mathrm{I}_{0} \propto \mathrm{~V}_{\mathrm{AC}}$
$I_{B}=I_{0}\left(\beta V_{A C}\right)^{3}\left(\delta V_{B C}\right)^{1 / 2}$
Where I_{0}, α, β, and δ are process-related parameters.
Draw the DC small-signal model of your transistor, Clearly label the node voltages and currents!
Write down algebraic expressions for the values of the circuit elements of your small signal model.
If you want to make a voltage amplifier, which terminal would you make the input, and which would you make the output? Why?

one pt for each element one pt for nide labels ene pt for current labels

Expressions for the values of the circuit elements of your model
I pt for each afinition (derivative)

$$
\begin{gathered}
g_{\text {in }}=\alpha I_{0} \quad r_{\text {in }}=\frac{1}{S_{\text {in }}}=\frac{1}{\alpha I_{0}} \\
g_{m}=\beta 3 I_{0}\left(\beta V_{A C}\right)^{2}\left(\delta V_{B C}\right)^{1 / 2}=\frac{3 I_{B}}{V_{A C}} \\
\sigma_{0}=\frac{1}{2} \delta I_{0}\left(\beta V_{A C}\right)^{3}\left(\delta V_{B C}\right)^{-1 / 2}=\frac{1}{2} I_{B} \\
r_{0}=\frac{2\left(\delta V_{B C}\right)^{1 / 2}}{\delta I_{0}\left(\beta V_{A C}\right)^{3}}=
\end{gathered}
$$

$$
\frac{2 \delta^{1 / 2} V B C^{1 / 2}}{\delta I_{0}\left(\beta V_{A C}\right)^{3}}=
$$

I pt for each answer
apt each for $g_{i n}, g_{0} \rightarrow r_{\text {in }} r_{0}$

$$
r_{0}=\frac{1}{T_{0}}=\frac{V V_{B c}}{T_{B}}
$$

Ip+ for each 110
I pt for each explanation
3. In the current mirror below, assume that $\mu_{n} C_{0 x}=200 u A / V^{2}, \lambda=0.1 / \mathrm{V}$, and $\mathrm{V}_{T N}=1 \mathrm{~V}$. All transistors have $\mathrm{W} / \mathrm{L}=100 \mathrm{u} / \mathrm{lu}$. Calculate the gate bias voltage $\mathrm{V}_{\mathrm{GSI}}$ resulting from the input current. Calculate the currents flowing in the drains of the other transistors. All calculations should be accurate to a few percent.

$$
\begin{aligned}
& \mu_{n} l_{0} \\
& 2 \frac{W}{L}= \\
& 10 \frac{10 \mu^{A}}{V^{2}} \cdot 100=\frac{10 \mathrm{~mA}}{V^{2}} \\
& 12_{A A}=I_{D}= \frac{10 \mathrm{~mA}}{V^{2}}\left(V_{G S}-V_{t}\right)^{2}\left(1+\lambda V_{D S}\right) \\
& V_{G S}=2 \\
& I_{D 4}= \mu_{n} 1.2 \times \frac{W}{2}\left(2-1-\frac{1}{2} 0.1\right) 0.1 \\
&= 20 \mathrm{~mA}(0.95)(0.1) \\
&= \$.90 \mathrm{~mA}
\end{aligned}
$$

4. For the circuit below, find the input V_{B}^{*} necessary to make $V^{*} C=1 V$ and find the operating point currents $\mathrm{I}_{\mathrm{B}}^{*}$, and $\mathrm{I}^{*} \mathrm{C}$. Draw the small signal model for the circuit, and calculate the DC gain. Assume $\mathrm{I}_{\mathrm{S}}=10^{-15} \mathrm{~A}, \beta=100$, and $\mathrm{V}_{\mathrm{A}}=100 \mathrm{~V}$. Answers should be accurate to 10%.

$$
\begin{aligned}
& S_{m}=\frac{I_{c}}{V_{T}}=\frac{10 \mathrm{~mA}}{26 \mathrm{mV}} \quad r_{\pi}=S_{m}=2 \\
& \frac{V_{2}}{T_{D}}=\frac{100 \mathrm{~V}}{10 \mathrm{~m}}=2.10^{4}
\end{aligned}
$$

Small signal model for the whole circuit. Label voltages and components.

$$
A_{v}=-S_{m} R_{\Delta x}=(0.4)(.9 k)=360
$$

