Prelab 7 – Frequency response – Due at the beginning of lab!

It wouldn’t be a bad idea to build this circuit before you show up in lab.

1. For the common emitter amplifier above, with \(R_C = 10k \), \(R_E = 1k \), \(R_2 = 100k \), and \(V_{CC} = 10V \),
 a. choose \(R_1 \) such that the output bias voltage is roughly 5--6V.
 b. calculate \(g_m \) and \(G_M \)
 c. estimate the low frequency gain from \(v_b \) to \(v_c \).

2. Calculate the pole frequency of the input pole, \(\omega_{p, in} \), assuming \(C_1 = 0.1uF \). Sketch the magnitude of the gain (which is less than 1) from \(v_{in} \) to \(v_b \). Label the pole frequency.
3. Calculate the pole frequency of the emitter impedance pole, $\omega_{p,E}$ assuming $C_E=0.1\text{uF}$
 a. Find the frequency, $\omega_{p,GM}$, at which the magnitude of the emitter degeneration impedance is equal to $1/g_m$
 b. Plot the magnitude of the emitter impedance vs. frequency

4. Calculate the pole frequency of the output pole, assuming that $C_{\text{load}}=100\text{pF}$
 a. Plot the magnitude of the output impedance and the overall gain v_{in} to v_{out}