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Frequency response

Log plots

I f l t rytoplot  / (x)  = 
+."  

onal inearscaleforvaluesofx between0andl0, Igetafair lyrea-

sonable plot. If I try to extend the range to include 100, 1000, or one million, the plot quickly
stops conveying any useful information (try it sometime).
So what if I plot the 1og of f(x) vs. the log of x? Now I find that I can actually draw a curve over
many orders of magnitude of values of x and f(x) and still get useful information about it. Better
yet, all I really need to draw is straight lines.

The Bell - a unit of relative power (that'sa.joke-gert?)

One Bell is one order of magnitude of power gain. The Bell is a relative unit, in the sense that
you need to specify a reference power (or a ratio of powers) in order to calculate how many Bells
something is. For example, for sound pressure, the unit of power commonly used is the minimum
power audible by the human ear, which corresponds to a pressure wave of roughly 0.00002

N / m2. Conversational speech, at roughly 5 Bells (or 50 deci-Belts) SPL (sound pressure level)
has then 5 orders of magnitude more power than the minimum audible sound. A loud concert
might be somewhere around 10 Bells, or 10 orders of magnitude more sound power than the min-
imum audible sound! 10 orders of magnitude = 10,000,000,000. No wonder your ears ring a little
after the concert!

To calculate how many Bells you have, take the log (base 10) of the ratio of two powers:

.  /P\togro[ 
" 

] If you find that this unit is inconveniently large, you might want to multiply by 10
t,, re.f/

and talk about tenths of Bells, or deci-Bells, which is usually contracted to decibels or dB.

Probably the most common use of Bells or decibels is to represent the power gain of a linear sys-
tem, in which case the ratio of powers is the output power over the input power. For a truly linear
system, this ratio is independent of the magnitude of the input power.

Another common reference power level is the milli-Watt. Often power in RF circuits is written as
some number of dBm. or deci-Bells relative to a milli-Watt.

Sometimes the reference power will be some mid-band power level in a given circuit, as in "the
power is 3 dB down from it's DC value".

Because we usually work with voltages and currents rather than power levels, we can replace the
powers in the equation above with the expression for power as a function of voltage to get

roe,ofio J = rosr.l Y) = togro( #\'= zrogls(Jl)--\r ref/ '"lri"/ r ) 
't \ v ref/ vV rrf)

Which is the formula to use when calculating Bells based on voltage. To calculate deci-Bells
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based on voltage, you need to multiply by 10 of course, which is where we get the familiar for-
v

mula 2Ologf,.
v ref

Who cares about transfer functions?

Given a linear system with a transfer function H (s) , if the input of the system is driven with a
sine wave, the output of the system will be a sinusoid with some different magnitude and phase.
The wonderful thing about the transfer function is that it tells you what the magnitude and phase
of that output sinusoid will be.
Inpart icular, i f  v,n = sin (cor) ,  thenvou, = lH(i@)lsin(or + /.H (. irr l)) .  This is suchasim-

ple property to use, and such a powerful thing to be able to do, that we often plot lH (7co) | and
lH (jul) as a function of crl so that we can quickly look up what's going to happen to a sine
wave at a given frequency. If you plot the log of the magnitude vs log frequency, we call these
plots Bode plots. Why do we want to plot the log of magnitude and frequency, but plot phase on
a linear scale?

Voltage dividers

R.
These are easy: 

ffi;. 
The thing to remember is that this works with one or more capacitors

too.

complex numbers - magnitude, phase, and graphical calculation
Given a transfer function

H(s) = a
(s-Z) (s-Z). . . (s-Z*)

^ (s -  P,)  (s -  Pz) . . .  (s -  Pn)

the magnitude and phase can be conveniently broken down in terms of the magnitude and phase
of the individual terms of the form s - x, which has a nice physical meaning in the complex
plane. s - "r is the vector from x to s . If we need to know the vector's magnitude, we measure its
length. If we need to know its angle, we measure that relative to the positive horizontal axis.

To get the magnitude of H (s) , we see that it is just the producflquotient of a bunch of lengths:
flls - z,lln(,)t=|"^|ff i

So we just need to measure all of the vectors from zeros to 's', and divide that product by the
product of all of the lengths of the vectors from all of the poles to 's'.

Similarly for angles, if you represent the complex numbers as exponentials, you can quickly con-
vince yourself (see below if you need a little help in the argument) that the angle of H(s) is just the
sum/difference of a bunch of angles:

= o f IG-2,)
'fl (s - Pr)
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zH(s) = Llg-z) -Ez(s-P;)

The long and short of it is that you can draw your poles and zeros, and think about how all of
these lengths and angles change as you move around in the complex plane. Usually you will be
particularly interested in sliding 's' up and down the positive complex axis. (If you can't figure
out why, go back up and look at 'Who cares about transfer functions?')

The capacitor - a frequency dependent resistor?
One very useful way to think about capacitors is just as frequency dependent resistors.
an RC circuit and want to know how it will perform at a given frequency, just replace

tor (mentally!) with a resistor of value I^. o lpF capacitor gives you lMe at (D =

If you see
the capaci-

106 radl

sec, and IkQ at ot = 109 radlsec. (Quick quiz - what are those frequencies in Hertz?) If the
capacitor is in parallel or series with a l0 kO resistor, something interesting is going to happen
between those two frequencies.

Is this the right way to think about capacitors? In some cases yes - but don't forget that you're
neglecting the phase shift (that's really supposed to be a 7co not an crr in the formula for the
impedance of a capacitor).
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Complex numbers

A complex number of the form a + bj canalso be represented as an exponential of the form ,rio .
In the first form, a and b specify the position of a point in a two dimensional space in a familiar
Cartesian way. In the second form, the position of the point is specified as a radius r and.an angle
from the horizontal axis, 0. You can use geomeffy to figure out what the relationship is between
the pair a, b and the pair r, 0.

One advantage of the exponential form of a complex number is that the magnitude and phase can
be read directly from the representation. The magnitude is r and the phase is 0.
This feature makes it convenient to work with transfer functions using exponential notation. If
we represent a transfer function as

H(s)=o^ff i=o^W-
" . (s -  r r )  (s -  p)  . . .  (s -  p,)  (s _ p;)

and then substitute in an exponential representation for each of the (s - Z,) and (s - p,) terms,
we get

l1(s)  = a^ flrrejo''
jor, j!r- jop

,pru ' fpr€ " . . . rp,e n
ffr, ejo''

now remember that products of exponentials turn into an exponential of a sum, and we see that

H (s) = o fI", "t(Lu',- Et",)*fr,,,
The magnitude of the transfer function at a given point s is just the product of the distances from
the zeros to s divided by the distances to all of the poles (and don't forget about a^). Thephase
is the sum of all of the phases of vectors drawn from zeros to s minus the phases of vectors drawn
from poles to s.
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Frequency response, part II

Most amplifiers can be broken down into a series of stages. Each stage has its own relationship
between gain and frequency, which we call the frequency response oithr stage. The overalt gain
of the amplifier as a function of frequency is just the product of the frequenc! depenoent gain of
each stage. In many cases, the stages can be modeled independent of each other. We will see that
in some cases (notably Miller compensation) the gain of one stage has a sffong effect on the
fequency response of another stage.

Single stage gain and frequency response
Most gain stages can be modeled by a voltage controlled current source or transconductance
(B *), an output resistance (, ou), and an output capacitance (C 

"il.

The low frequency gain of the amptfier is independent of the capacitor value, and is just -g 
^r 

ou, .
At some higher frequency, the capacitor will begin to "steal" a signifcant fraction of the current
coming out of the transconductor. This will mean that less current is flowing in the resistor, hence
the output voltage will decrease, and the gain of the system will drop ,".orJingly. To find the fre-
quency at which the capacitor has the same nmgnitude impedance as the resisioi:

l l l
lM)= ,oc;rr= rou,

Now solve for rrr to get crr. =
r outc ey

If we were to replace the capacitor with a resistor of equal magnitude impedance, the voltage gain
of the amplifier would decrease by a factor of two. Because the capacitor has a complex imped-
ance, the actual decrease in gain at frequency or, is only J1. (Why? you should be able to show
this both graphically and atgebraically).

For frequencies higher than cDc, most of the current from the ffansconductor goes into the capaci-
tor, and the resistor plays an increasingly small part in the circuit, the load impedance looks very

much li,." 
&, 

and the output voltage becomes , 
" 

= 
ffi, 

,

Another frequency of interest is the frequ ency atwhich the amplifier gives a gain of 1. The unity
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gain frequency CI)t is the frequency at which amplifier stops giving voltage and. gain,and begins

to attenuate the signal' This occurs when , = 
!-. These three expressions for the DC gain,v rff

corner frequency, and unity gain frequency are very general - they apply to MoS amplifiers, bipo-lar and vacuum tube-amplifiers, even hydraulic ,yrt.Lr. They are based on the assumption thatthe stage is linear, which is always trusfor "smal'I" signals - where n'small,, 
essentially means sig-

ffi}]rt:" 
are small enough to make the amplifier looklinear (so we've gor some circuiar logic

The relationships can be summarized graphically using a plot of the log of the magnitude of thegain versus the log of the input frequency.

log (g 
^r 

or,)

Let's plug in some numbers: if we have a g * of 1 
^N'f 

, an output resistance of one Megaohm,
and a 1 pF capacitgl-we get a DC gain of -1000, a corner frequency of one million radians persecond' or around 160kHz, and a unity gain frequency of one billion rad/sec, or around 160 MHz.

It is worth remembering how the three components affect the shape of the transfer function aswell' Increasing the output resistance ror, increases the low frequency gain, but decreases the
corner frequency' so the high frequency performance remains unchanged. Increasing the effectivecapacitanc" c 

"fi 
decreases both the corner frequency and the unity gain frequency, but has no

effect on low frequency gain. Increasing the hansconductance g, increases both the low fre-
quency gain' and the unity gain frequency, but does not affect the corner frequency.Notice that the unity gain frequency is equal to the corner frequency times the Dc gain,01 = (8 

^r 
or) o. ' h general, the gain at frequencies above the corner frequency is given by

A ( rrl) = - 
8.,-f oY' =8 ̂ r 

our@, = 
Ao'" 

= GB
r+(D/(Dc (D (D (D

where GB is the gain-bandwidth product of the amplifier.
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IncreasinE rou, Decreasing Crf Increasing g,

Feedback and stability

Feedback improves linearity, reduces output impedance, reduces input offset, increases band-
width (sort of), allows gain to be set accurately, and all sorts of other wonderful stuff. Unfortu-
nately, it also introduces the possibility of instability

vtw
v ou,

With a little algebra you can show that the gain from input to output in this figure is
t/,  OUT_=
V,* 1+AB

All of the quantities in this equation can be frequency dependent, and the relationship still holds,

and is often written G (s) = r ,O,(f). a . If A is very large (or A(s) has a large magnitude), you1 +A (s)  p

can approximate the gain 
", | . fo get a large gain, you need a small B, which may seem coun-p

terintuitive, but one way to look at it is that the amplifier needs to set V o* so that V * and V _ are
(approximately)equal. I f  P issmall, i t takesmoreof Vour toproducethedesiredeffect atV-,
resulting in large gain.
From the equation for the gain, it is clear that something interesting will happen f AA = - | .
The equation indicates that the amplifier will provide infinite gain in this case. The unfortunate
reality of this is that the amplifier will oscillate, become unstable, rtng,buzz,pop, and in some
cases, melt.. It will certainly not provide you with the nice clean signals that you would like to
see.
To avoid this unstable state of affairs, let's first see how it can happen.

6/7 t9s
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A(s) equal to negative one implies that the magnitude of A is one, and the phase of A is 180
degrees. Is this the only combination to worry about? What if the magnitude of A is 2 when the
phase is 180 degrees? The answer, as you might expect, is that if the magnitude A is greater than
or equal to 1 when the phase of A is 180 degrees, the system will be unstable. [rt's call the
fequency at which the amplifier gives a phase shift of 180 degrees or80. From the figure we can

see that a signal arriving at the positive input of the amplifier with frequency crlrro will be ampli-

fied in magnitude by lA ("rrrso) | , and effectively multiplied by -1 (due to the 180 degrees of

phase shift) and sent into the negative input of the op-amp. The two minus signs will cancel, and
the process will repeat. Each time around the loop the signal will be multiplied by lA (",rrao) | ,

and inverted twice. Clearly, if lA (7olrr/ | is greater than 1, the output signal will increase rapidly

with time until something non-linear happens (like hitting the supply rails of the amplifier).

In summary, to design a stable amplifier, you need to make sure that you design the frequency
response so that the magnitude of the transfer function is less than one by the time the phase has
reached 180.

Miller compensation

The two stage CMOS op-amp below has a primary pole associated with each stage. Both poles

Tt
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are of the form, @p = 
+, butin both cases something interestinghappens. The capacitance
r ourL eff

seen at the output of the differential amplifier is much larger than the apparent values of the

capacitors C *+ C ,. This is due to the Miller multiplication of the compensation capacitor C, .

When a capacitor is placed across a gain stage it's effective capacitance changes. Consider the

figure below, in which V o = -AV,. The charge on the capacitor is given by

Q = C (V i-V), but since we know whatVo is once we know V,,we can just write

Q = C(Vi--AV) = C (1+A)Vi = Crfy ' ,  where Crf f  = (1+A)C. Sotheeffect ivecapac-

itance is equal to the actual capacitor value times the gain of the stage it's across.

In the figure below, this means that C rrr, = g m.r out2C * and that the pole of the differential

amplifier is at cl)or
11=-=-

rort tc ,1t  ror t l (8^7t 'ou,z)  C * '
If this were the only pole of the op-amp, the corresponding unity gain would be

VoVi

01 = Ao@pI - 
(8^zr o''t) (8 nr o''z) = y. As we will see, it turns out that this generally is

r  outL (B 
^7t 'out2) 

C ,  C x

the unity gain frequency of a well designed Miller compensated op-amp.
The pole frequency of the gain stage is also affected by the compensation capacitor, but not
because of Miller multiplication. There is no Miller multiplication since the gain looking from
the output of the stage back toward the input is small. At higher frequencies, however, the com-
pensation capacitor does effectively couple the output signal back to the gate of transistor M7 ,

6nps



m 1158

resulting in an effective output resistance of r out2 = + for frequencies above rrrol .uutL 
I  m'7

The capacitance seen at the output node is the sum of the load capacitance C, and the series com-

binat ionof C* andCr. I f  CxrrCr, thentheoutputcapaci tanceis just  Cout2= CL+Ct.  Gener-

ally the load capacitance will be higher than the internal capacitance C1, so the second pole

frequency is approxim ately r;-r, = y
'  vL

There is one additional effect of the compensation capacitor. In addition to supplying a high-fre-
quency coupling from the output to the gate of l:N.{7,it also allows signals to favel from V, to V o
without going through the inverting path through M7. This results in a right half plane zero

8,n7
located at az = -fi.

Noise

There are many sources of noise in analog circuits. There is external noise, which may come
from electrostatic or magnetic interference (you've all seen 60Hz on an oscilloscope). This type
of noise can be minimized by using differential signals, running signals in twisted pair wires, or
co-ax cable. Unfortunately for the analog circuit designer, there is a more fundamental type of
noise in electrical circuits - thermal noise.

All resistors generate noise. Elecffons in a resistor are always bouncing around - they have ther-
mal energy. In the absence of an externally applied electric field, their motions are random. At
any given time, some of them will be poking their heads out one end of the resistor or the other.
This generates a voltage which is random, and this voltage is what we call the thermal noise volt-
age of the resistor. Nyquist (I think) showed that the amount of power in this noise voltage was
4kT for every Hz of bandwidth. Since the amount of noise power is the same all across the spec-
trum (4kT in each Hz) this is often called "white noise" (Q: what does "white" have to do with
evenly distributed power over frequency?). kT is a fairly small amount of energy (about

4 x tA-zr Joules at room temperature), so we're not talking about much power here. If we look at
all of the thermal energy from DC to a gigaHertz,we only get about four picoWatts. Equating the
power that Nyquist tells us about with the formula for power in a resistor, we come up with
tt2

V 
=  kTA,f and if we want to know what the noise voltage will be, we can solve for V to get

y = J kTRLf
For a lkC) resistor, this works out to about 4 nanoVolts times the square root of the bandwidth of
interest, or 4 nV/ J-Hz. So in a 1 MHz bandwidth, we could expect to see on average about 4
microVolts of noise across the resistor.
Active devices (like MOSFETs and BJTs) generate noise because they have internal resistances.
Ideal passive components such as inductors and capacitors do not generate noise, but real devices
will generally have some parasitic resistance which will generate noise.
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Questions

Since the gain of a multistage amplifier is the product of the gains of the individual stages,

why is it that I can talk about adding the magnitude and phase of the transfer functions? (you

may want to use both graphical or analytical explanations to answer this question)

Derive the formula for the output impedance of a cascode stage (r ou,* g.r2).

Derive the formula for the impedance at the source of the cascode transistor (r ou, = 
;| I tn t
om

cascode amplifier.
If I invent a new type of MOS ransistor with a drain current given by

I p(V ps,V ss) = X (VZs+ BVf,5) [ f * 1,ffi,), a"riu" expressions for the transconduc-

tance and output impedance (S^ and ro).

Design a folded cascode CMOS amplifier with a DC gain of 10,000 and a unity gain fre-
quency of 200 MHz. Assume that the load will be capacitive, with no more than 10pF of
capacitance. How would your design change if you were told to minimize power dissipation
at all costs? What would the minimum power dissipation be? What if you were told to mini-
mize die area? (Assume that die area is directly related to the sum of W times L for all
devices). What if you were told to design for a power supply of less than 5 volts. How low
could you go?
Design a two stage Miller compensated CMOS amplifier which will be able to track input sig-
nals with better than 0.lVo accuracy when used in unity gain feedback with a 1k resistive load.
How would your design change under the same constraints of power, die area, and supply
voltage above?
What is the fastest op-amp you can design which operates from a 5 volt supply, allows input

and output voltage swings to within 1 volt of each rail, and dissipates less than 100pW of
power?
Compare the performance of a CMOS two stage Miller compensated op-amp drawing 1mA in
the input stage and 5 mA in the output stage with the performance of a similar bipolar operat-

ing with the same bias currents. In particular, if we assume a V o, of 250mV for the CMOS

devices, how do the transconductances and output resistances of the individual devices com-
pare? What size capacitor is needed in each case to make the amplifiers unity gain stable?
What is the DC gain? Unity gain bandwidth? How do these answers change if we increase of

decrease Vo, for the CMOS devices?

Explain why unity gain feedback is the worst form of passive feedback ("worst" from a stabil-

ity perspective). For an amplifier with 8.3 = Bp, and C* = I0Ct, what is the minimum

feedback gain (or maximum feedback factor B ) for which the system will have 90 degrees of
phase margin?

5.

6.

7.

8.

9.
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