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Chapter 6

SCALAR DIFFRACTION THEORY
[Reading assignment: Hect 10.2.4-10.2.6,10.2.8, 11.3.3]

Scalar Electromagnetic theory:

      monochromatic wave

P : position    t : time       : optical  frequency

u(P, t) represents the E or H field strength for a particular transverse polarization component

U(P) : represents the complex field amplitude

               : real

Diffraction: 

Approximations:

1.  We impose the boundary condition on U, that U = 0 on the screen.
2.  The field in the aperture  is not affected by the presence of the screen.
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This equation expresses the Huygens-Fresnel principle:  The observed field is expressed as a superpo-

sition of point sources in the aperture, with a weighting factor .

Fresnel approximation

Huygens-Fresnel integral in rectangular coordinates: 

The Fresnel approximation involves setting:    in the denominator, and

   in exponent

This is equivalent to the paraxial approximation in ray optics.

(A)

Let’s examine the validity of the Fresnel approximation in the Fresnel integral.  The next higher order
term in exponent must be small compared to 1.  So the valid range of the Fresnel approximation is:

For field sizes of 1 cm, , we find  cm.

Actually we should look at the effect on the total integral.  Upon closer analysis, it is found that the
Fresnel approximation holds for a much closer z.  This is referred to as the “near-field region”.

Farther out in z, we can approximate the quadratic phase as flat
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This region is referred to as the “far-field” or Fraunhofer region.

Now this is exactly the Fourier transform of the aperture distribution with

              

The Fraunhofer region is farther out.  For the field size of 1 cm, and  , we find the valid
range of    meters!

Again, examining the full integral, Fraunhofer is actually accurate and usable to much closer dis-
tances.   

Examples

A rectangular aperture, illuminated by a normally incident plane wave: 

With plane wave illumination, we have:  

          

z
k 2 2

+ max

2
-----------------------------------»

U x y  e
jkz

e
j

k
2z
----- x

2
y

2
+ 

jz
------------------------------------ d U    j

2
z
------ x y+ –expd=

F U    
fx

x
z
----- fy y

z
-----= =

 0.5m=

z 150»

tA rect


2wx
--------- 
  rect


2wy
--------- 
 =



wy

wx

U    tA   =

U x y z   e
jkz

e
j

k
2z
----- x

2
y

2
+ 

jz
------------------------------------F U 

fx
x
z
-----=

fy
y
z
-----=

=



Chapter 6: DIFFRACTION THEORY

94 © Jeffrey Bokor, 2000, all rights reserved

Recall .  The observable is intensity .

The width of the central lobe of the diffraction pattern is

The diffraction half angle     

For a circular aperture with radius w :       radial coordinates

In circular coordinates, we use the Fourier - Bessel transform:   B{U(q)} gives immediately: 

 “Airy pattern”  
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Diffraction grating  (transmission)  

m:  peak to peak amplitude change    

f0:  grating spatial frequency  

By convolution, the diffracted amplitude is

  

We have neglected interference terms between orders.

Compared to the square aperture, which has the central peak with intensity Io, we now have:
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The “resolving power” of the grating   

DIFFRACTION THEORY OF A LENS
We have previously seen that light passing through a lens experiences a phase delay given by:

   (neglecting the constant phase)

The focal length, f  is given by:

    The “lens makers formula”

The transmission function is now:

This is the paraxial approximation to the spherical phase

Note:  the incident plane-wave is converted to a spherical wave converging to a point at f  behind the
lens (f  positive) or diverging from the point at f  in front of lens (f  negative). 

Diffraction from the lens pupil

Suppose the lens is illuminated by a plane wave, amplitude A.  The lens “pupil function” is .

The full effect of the lens is  

    jk n 1–  2 2
+
2

------------------ 
  1

R1
------ 1

R2
------– 

 –exp=

f

f

P   

Ul'       P   =



Chapter 6: DIFFRACTION THEORY

97 © Jeffrey Bokor, 2000, all rights reserved

We now use the Fresnel formula to find the amplitude at the “back focal plane”  z = f

 

The phase terms that are quadratic in  cancel each other.

(B)

This is precisely the Fraunhofer diffraction pattern of !  Note that a large z  criterion does not apply

here. 

The focal plane amplitude distribution is a Fourier transform of the lens pupil function P(), multi-
plied by a quadratic phase term.  However, the intensity distribution is exactly

Example:  a circular lens, with radius w  
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The spot diameter is  

         paraxial approximation

The “Rayleigh” resolution of the lens is .

 For a large , 
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